Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Glaciers Account for Most of Greenland's Recent Ice Loss

22.09.2008
The recent dramatic melting and breakup of a few huge Greenland glaciers have fueled public concerns over the impact of global climate change, but that isn’t the island’s biggest problem.

A new study shows that the dozens of much smaller outflow glaciers dotting Greenland’s coast together account for three times more loss from the island’s ice sheet than the amount coming from their huge relatives.

In a study just published in the journal Geophysical Research Letters, scientists at Ohio State University reported that nearly 75 percent of the loss of Greenland ice can be traced back to small coastal glaciers.

Ian Howat, an assistant professor of earth sciences and researcher with Ohio State’s Byrd Polar Research Center, said their discovery came through combining the best from two remote sensing techniques. It provides perhaps the best estimate so far of the loss to Greenland’s ice cap, he says.

Aside from Antarctica, Greenland has more ice than anywhere else on earth. The ice cap covers four-fifths of the island’s surface, is 1,491 miles (2,400 kilometers) long and 683 miles (1,100 kilometers) wide, and can reach 1.8 miles (3 kilometers) deep at its thickest point.

As global temperatures rise, coastal glaciers flow more quickly to the sea, with massive chunks breaking off at the margins and forming icebergs. And while some of the largest Greenland glaciers – such as the Jakobshavn and Petermann glaciers on the northern coast – are being closely monitored, most others are not.

Howat and his colleagues concentrated on the southeastern region of Greenland, an area covering about one-fifth of the island’s 656,373 square miles (1.7 million square kilometers). They found that while two of the largest glaciers in that area – Kangerdlugssuaq and Helheim – contribute more to the total ice loss than any other single glaciers, the 30 or so smaller glaciers there contributed 72 percent of the total ice lost.

“We were able to see for the first time that there is widespread thinning at the margin of the Greenland ice sheet throughout this region.

“We’re talking about the region that is within 62 miles (100 kilometers) from the ice edge. That whole area is thinning rapidly,” he said.

Howat says that all of the glaciers are changing within just a few years and that the accelerated loss just spreads up deeper into the ice sheet.

To reach their conclusions, the researchers turned to two ground-observing satellites. One of them, ICESAT (Ice, Cloud, and land Elevation Satellite), does a good job of gauging the ice over vast expanses which were mostly flat.

On the other hand, ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) does a better job at seeing changes at the steeper, less-flat margins of the ice sheet, Howat said.

“We simply merged those data sets to give us for the first time a picture of ice elevation change – the rate at which the ice is either going up or down – at a very high (656-foot or 200-meter) resolution.

“They are a perfect match for each other,” Howat said.

“What we found is the entire strip of ice over the southeast margin, all of these glaciers, accelerated and they are just pulling the entire ice sheet with it,” he said.

Howat said that their results show that such new findings don’t necessarily require new types of satellites. “These aren’t very advanced techniques or satellites. Our work shows that by combining satellite data in the right way, we can get a much better picture of what’s going on,” Howat said.

Along with Howat, B.E. Smith and I Joughin, both of the University of Washington, and T.A. Scambos from the National Snow and Ice Data Center at the University of Colorado worked on the project.

The research was funded in part by the National Aeronautics and Space Administration.

Contact: Ian Howat, (614) 292-6641; ihowat@gmail.com

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Antarctica Greenland Greenland ice coastal glaciers crystalline ice sheet

More articles from Earth Sciences:

nachricht Rare Earth Elements in Norwegian Fjords?
06.08.2020 | Jacobs University Bremen gGmbH

nachricht Rock debris protects glaciers from climate change more than previously known
05.08.2020 | Northumbria University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>