Slowdown of global warming fleeting

“Some researchers have in the past attributed a portion of Northern Hemispheric warming to a warm phase of the AMO,” said Michael E. Mann, Distinguished Professor of Meteorology. “The true AMO signal, instead, appears likely to have been in a cooling phase in recent decades, offsetting some of the anthropogenic warming temporarily.”

According to Mann, the problem with the earlier estimates stems from having defined the AMO as the low frequency component that is left after statistically accounting for the long-term temperature trends, referred to as detrending.

“Initial investigations into the multidecadal climate oscillation in the North Atlantic were hampered by the short length of the instrumental climate record which was only about a century long,” said Mann. “And some of the calculations were contaminated by long-term climate trends driven or forced by human factors such as greenhouse gases as well as pollutants known as sulfate aerosols. These trends masqueraded as an apparent oscillation.”

Mann and his colleagues took a different approach in defining the AMO, which they report online in a special “Frontier” paper in Geophysical Research Letters. They compared observed temperature variation with a variety of historic model simulations to create a model for internal variability of the AMO that minimizes the influence of external forcing — including greenhouse gases and aerosols. They call this the differenced-AMO because the internal variability comes from the difference between observations and the models' estimates of the forced component of North Atlantic temperature change. They found that their results for the most recent decade fall within expected multidecadal variability.

They also constructed plausible synthetic Northern Hemispheric mean temperature histories against which to test the differenced-AMO approaches. Because the researchers know the true AMO signal for their synthetic data from the beginning, they could demonstrate that the differenced-AMO approach yielded the correct signal. They also tested the detrended-AMO approach and found that it did not come up with the known internal variability.

The detrended approach produced an AMO signal with increased amplitude — both high and low peaks were larger than in the differenced-AMO signal and in the synthetic data. They also found that the peaks and troughs of the oscillation were skewed using the detrending approach, causing the maximums and minimums to occur at different times than in the differenced-AMO results. While the detrended-AMO approach produces a spurious temperature increase in recent decades, the differenced approach instead shows a warm peak in the 1990s and a steady cooling since.

Past researchers have consequently attributed too much of the recent North Atlantic warming to the AMO and too little to the forced hemispheric warming, according to the researchers.

Mann and his team also looked at supposed “stadium waves” suggested by some researchers to explain recent climate trends. The putative climate stadium wave is likened to the waves that go through a sports stadium with whole sections of fans rising and sitting together, propagating a wave around the oval. Random motion of individuals suddenly becomes unified action.

The climate stadium wave supposedly occurs when the AMO and other related climate indicators synchronize, peaking and waning together. Mann and his team show that this apparent synchronicity is likely a statistical artifact of using the problematic detrended-AMO approach.

“We conclude that the AMO played at least a modest role in the apparent slowing of warming during the past decade,” said Mann. “As the AMO is an oscillation, this cooling effect is likely fleeting, and when it reverses, the rate of warming increases.” Others working on this project were Byron A. Steinman, postdoctoral fellow in meteorology, and Sonya K. Miller, programmer/analyst, meteorology, Penn State.

The National Science Foundation supported this work.

Media Contact

A'ndrea Elyse Messer EurekAlert!

More Information:

http://www.psu.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors