Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat

15.12.2017

Charged particles in Earth's inner radiation belt created by cosmic rays born from supernova explosions

A 60-year-old mystery about the source of energetic, potentially damaging particles in Earth's radiation belts has been solved using data from a shoebox-sized satellite built and operated by students. The satellite is called a CubeSat.


The CubeSat just before it was brought into the launch facility.

Credit: University of Colorado Boulder

Imagine a fully instrumented satellite the size of a half-gallon milk carton. Then imagine that milk carton whirling in space, catching never-before-seen glimpses of atmospheric and geospace processes.

CubeSats, named for the roughly 4-inch-cubed dimensions of their basic building elements, are stacked with smartphone-like electronics and tiny scientific instruments.

Built mainly by students and hitching rides into orbit on NASA and U.S. Department of Defense launch vehicles, the small, low-cost satellites have been making history.

Now, results from a new study using CubeSats indicate that energetic electrons in Earth's inner radiation belt -- primarily near its inner edge -- are created by cosmic rays born from supernova explosions, said scientist Xinlin Li of the University of Colorado Boulder (CU Boulder).

Earth's dual radiation belts, known as the Van Allen belts, are layers of energetic particles held in place by the planet's magnetic field.

Soon after the discovery of the Van Allen radiation belts in 1958, American and Russian scientists concluded that the process of "cosmic ray albedo neutron decay" (CRAND) was likely the source of the high-energy particles trapped in Earth's magnetic field. But over the following decades, no one successfully detected the corresponding electrons that should be produced during the neutron decay.

Li's team showed that during CRAND, cosmic rays entering Earth's atmosphere collide with neutral atoms, creating a splash that produces charged particles, including electrons, that become trapped by Earth's magnetic field.

The findings have implications for understanding and better forecasting the arrival of energetic electrons from space, which can damage satellites and threaten the health of space-walking astronauts, said Li.

"We are reporting the first direct detection of these energetic electrons near the inner edge of Earth's radiation belts," said Li. "We have finally solved a six-decade-old mystery."

A paper presenting the findings is published in this week's issue of the journal Nature. Li is the lead author. The study was funded by the National Science Foundation (NSF).

"These results reveal, for the first time, how energetic charged particles in the near-Earth space environment are created," said Irfan Azeem, a program director in NSF's Division of Atmospheric and Geospace Sciences, which supported the research. "The findings will significantly improve our understanding of the Earth-space environment. It's exciting to see NSF-funded CubeSats -- built by undergraduate and graduate students -- at the center of a significant scientific discovery."

The CubeSat mission, called the Colorado Student Space Weather Experiment (CSSWE), housed a small telescope to measure the flux of solar energetic protons and Earth's radiation belt electrons.

Launched in 2012 aboard an Atlas V rocket, CSSWE involved more than 65 students and was operated for more than two years from a ground station on the roof of a building on the CU-Boulder campus.

Part of the work of CSSWE involved building a smaller version of an instrument developed by a CU-Boulder team led by Nature paper co-author Daniel Baker and launched on NASA's 2012 Van Allen Probes mission. The modified instrument is called the Relativistic, Electron and Proton Telescope integrated little experiment (REPTile).

"This is really a beautiful result and a big insight derived from a remarkably inexpensive student satellite, illustrating that good things can come in small packages," said Baker. "It's a major discovery of what has been there all along, a demonstration that Yogi Berra was correct when he remarked, 'You can observe a lot just by looking.'"

###

Other Nature paper co-authors include researchers Hong Zhao and Kun Zhang of CU Boulder; Richard Selesnick of the Air Force Research Laboratory at Kirtland Air Force Base in New Mexico; Quintin Schiller of NASA's Goddard Space Flight Center in Greenbelt, Maryland; and Michael Temerin of the University of California, Berkeley.

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>