Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat

15.12.2017

Charged particles in Earth's inner radiation belt created by cosmic rays born from supernova explosions

A 60-year-old mystery about the source of energetic, potentially damaging particles in Earth's radiation belts has been solved using data from a shoebox-sized satellite built and operated by students. The satellite is called a CubeSat.


The CubeSat just before it was brought into the launch facility.

Credit: University of Colorado Boulder

Imagine a fully instrumented satellite the size of a half-gallon milk carton. Then imagine that milk carton whirling in space, catching never-before-seen glimpses of atmospheric and geospace processes.

CubeSats, named for the roughly 4-inch-cubed dimensions of their basic building elements, are stacked with smartphone-like electronics and tiny scientific instruments.

Built mainly by students and hitching rides into orbit on NASA and U.S. Department of Defense launch vehicles, the small, low-cost satellites have been making history.

Now, results from a new study using CubeSats indicate that energetic electrons in Earth's inner radiation belt -- primarily near its inner edge -- are created by cosmic rays born from supernova explosions, said scientist Xinlin Li of the University of Colorado Boulder (CU Boulder).

Earth's dual radiation belts, known as the Van Allen belts, are layers of energetic particles held in place by the planet's magnetic field.

Soon after the discovery of the Van Allen radiation belts in 1958, American and Russian scientists concluded that the process of "cosmic ray albedo neutron decay" (CRAND) was likely the source of the high-energy particles trapped in Earth's magnetic field. But over the following decades, no one successfully detected the corresponding electrons that should be produced during the neutron decay.

Li's team showed that during CRAND, cosmic rays entering Earth's atmosphere collide with neutral atoms, creating a splash that produces charged particles, including electrons, that become trapped by Earth's magnetic field.

The findings have implications for understanding and better forecasting the arrival of energetic electrons from space, which can damage satellites and threaten the health of space-walking astronauts, said Li.

"We are reporting the first direct detection of these energetic electrons near the inner edge of Earth's radiation belts," said Li. "We have finally solved a six-decade-old mystery."

A paper presenting the findings is published in this week's issue of the journal Nature. Li is the lead author. The study was funded by the National Science Foundation (NSF).

"These results reveal, for the first time, how energetic charged particles in the near-Earth space environment are created," said Irfan Azeem, a program director in NSF's Division of Atmospheric and Geospace Sciences, which supported the research. "The findings will significantly improve our understanding of the Earth-space environment. It's exciting to see NSF-funded CubeSats -- built by undergraduate and graduate students -- at the center of a significant scientific discovery."

The CubeSat mission, called the Colorado Student Space Weather Experiment (CSSWE), housed a small telescope to measure the flux of solar energetic protons and Earth's radiation belt electrons.

Launched in 2012 aboard an Atlas V rocket, CSSWE involved more than 65 students and was operated for more than two years from a ground station on the roof of a building on the CU-Boulder campus.

Part of the work of CSSWE involved building a smaller version of an instrument developed by a CU-Boulder team led by Nature paper co-author Daniel Baker and launched on NASA's 2012 Van Allen Probes mission. The modified instrument is called the Relativistic, Electron and Proton Telescope integrated little experiment (REPTile).

"This is really a beautiful result and a big insight derived from a remarkably inexpensive student satellite, illustrating that good things can come in small packages," said Baker. "It's a major discovery of what has been there all along, a demonstration that Yogi Berra was correct when he remarked, 'You can observe a lot just by looking.'"

###

Other Nature paper co-authors include researchers Hong Zhao and Kun Zhang of CU Boulder; Richard Selesnick of the Air Force Research Laboratory at Kirtland Air Force Base in New Mexico; Quintin Schiller of NASA's Goddard Space Flight Center in Greenbelt, Maryland; and Michael Temerin of the University of California, Berkeley.

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>