Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silica algae reveal how ecosystems react to climate changes

09.03.2009
A newly published dissertation by Linda Ampel from the Department of Physical Geography and Quaternary Geology at Stockholm University in Sweden examined how rapid climate changes during the most recent ice age affected ecosystems in an area in continental Europe.

Rapid and extensive climate changes have taken place on several occasions in the past. For example, the latest ice age (lasting from about 115,000 to 11,500 years ago) is characterized by several rapid and dramatic climate swings.

These swings recurred in cycles of roughly 1,500 years and were originally discovered through studies of ice cores from Greenland in the early 1990s. These cycles started with an extremely rapid rise in temperatures, over just a few years or decades, of as much as 8-16o C over Greenland.

Linda Ampel studied how these rapid cycles in the climate affected ecosystems in an area in continental Europe. The study was based on analyses of sediment cores from an overgrown lake named Les Echets in eastern France and focuses on a time interval between 40,000 and 16,000 ago.

The findings are based on analyses of fossil silica algae, diatoms. Various species of diatoms prefer different water conditions relating to physical and chemical parameters such as temperature, salinity, access to nutrients, light, water depth, or available types of places to grow. These parameters, in turn, are affected by climate. Different species of diatoms can therefore indicate how the water environment changed as a consequence of the climate in the past.

Diatom analyses of the environmental archive from Les Echets, together with further analyses of chemical and biological parameters such as content of organic material and pollen grains from trees and other plants preserved in the lake, show that the ecosystems in the lake and its surroundings underwent marked changes during the latest ice age as a consequence of these 1,500-year cycles. The adaptation of the ecosystems prompted by the recurring warm periods took place as quickly as within 50 to 200 years.

"These findings show that ecosystems have changed rapidly in reaction to climate changes in the past, which indicates that quick adaptations could also take place in the future as a consequence of global warming, for instance," says Linda Ampel.

Contact: Linda Ampel, linda.ampel@geo.su.se, phone: +46 (0)8-674 75 95 or cell phone: +46 (0)70-366 32 82

Pressofficer Maria Sandqvist: maria.sandqvist@kommunikation.su.se;+46-70664 22 64

Pictures are available of diatoms, the landscape in France, and Linda at http://www.su.se/pub/jsp/polopoly.jsp?d=5833&a=59203

Maria Sandqvist | idw
Further information:
http://www.vr.se
http://www.su.se/pub/jsp/polopoly.jsp?d=5833&a=59203

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>