Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant sea-level rise in a 2-degree warming world

25.06.2012
Sea levels around the world can be expected to rise by several metres in coming centuries, if global warming carries on.

Even if global warming is limited to 2 degrees Celsius, global-mean sea level could continue to rise, reaching between 1.5 and 4 metres above present-day levels by the year 2300, with the best estimate being at 2.7 metres, according to a study just published in Nature Climate Change.

However, emissions reductions that allow warming to drop below 1.5 degrees Celsius could limit the rise strongly.

The study is the first to give a comprehensive projection for this long perspective, based on observed sea-level rise over the past millennium, as well as on scenarios for future greenhouse-gas emissions.
“Sea-level rise is a hard to quantify, yet critical risk of climate change,” says Michiel Schaeffer of Climate Analytics and Wageningen University, lead author of the study. “Due to the long time it takes for the world’s ice and water masses to react to global warming, our emissions today determine sea levels for centuries to come.”

Limiting global warming could considerably reduce sea-level rise

While the findings suggest that even at relatively low levels of global warming the world will have to face significant sea-level rise, the study also demonstrates the benefits of reducing greenhouse-gas emissions. Limiting global warming to below 1.5 degrees Celsius and subsequent temperature reductions could halve sea-level rise by 2300, compared to a 2-degree scenario. If temperatures are allowed to rise by 3 degrees, the expected sea-level rise could range between 2 and 5 metres, with the best estimate being at 3.5 metres.

The potential impacts are significant. “As an example, for New York City it has been shown that one metre of sea level rise could raise the frequency of severe flooding from once per century to once every three years,” says Stefan Rahmstorf of the Potsdam Institute for Climate Impact Research, co-author of the study. Also, low lying deltaic countries like Bangladesh and many small island states are likely to be severely affected.

Sea-level rise rate defines the time for adaptation

The scientists further assessed the rate of sea-level rise. The warmer the climate gets, the faster the sea level climbs. “Coastal communities have less time to adapt if sea-levels rise faster,” Rahmstorf says.

“In our projections, a constant level of 2-degree warming will sustain rates of sea-level rise twice as high as observed today, until well after 2300,” adds Schaeffer, “but much deeper emission reductions seem able to achieve a strong slow-down, or even a stabilization of sea level over that time frame.”

Building on data from the past

Previous multi-century projections of sea-level rise reviewed by the Intergovernmental Panel on Climate Change (IPCC) were limited to the rise caused by thermal expansion of the ocean water as it heats up, which the IPCC found could reach up to a metre by 2300. However, this estimate did not include the potentially larger effect of melting ice, and research exploring this effect has considerably advanced in the last few years. The new study is using a complementary approach, called semi-empirical, that is based on using the connection between observed temperature and sea level during past centuries in order to estimate sea-level rise for scenarios of future global warming.

“Of course it remains open how far the close link between temperature and global sea level found for the past will carry on into the future,” says Rahmstorf. “Despite the uncertainty we still have about future sea level, from a risk perspective our approach provides at least plausible, and relevant, estimates.”

Article: Schaeffer, M., Hare, W., Rahmstorf, S., Vermeer, M. (2012): Long-term sea-level rise implied by 1.5° C and 2° C warming levels. Nature Climate Change [doi:10.1038/NCLIMATE158] (Advance Online Publication)

Weblink to the article when it is published on June 24th: http://dx.doi.org/10.1038/NCLIMATE158

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>