Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking glaciers reveal hidden forests and a warmer climate

04.12.2008
Uniquely old tree remains have recently been uncovered by the thawing of the rapidly shrinking Kårsa Glacier west of Abisko in Lapland, in northernmost Sweden. The finds show that in the last 7,000 years it has probably never been so warm as during the last century.

"If the area hadn't been covered by a glacier all these thousands of years, these tree remnants would never have made it. The finds yield information indicating that the 20th century was probably the warmest century in 7,000 years. The fact that the climate is so unique during the last century means that we must question whether this could be 100 percent the result of natural mechanisms," says Leif Kullman, professor of physical geography, who is directing the project.

Pines and birches grew on the site of the glacier during parts of or perhaps the entire period between 11,800 and 7,000 years ago. This is shown by carbon 14 dating of the remains of trees that have now been uncovered. During that period, the glacier did not continuously exist, and the climate was warmer than at any time afterward.

All in all, there are four finds, parts of birch and pine trunks, that have been uncovered under the shrinking glacier in the Lapland mountains. In most cases they are well preserved, but they are degrading rapidly as they come in contact with air and water. As early as 2003, tree remnants of a similar age were found in Sylarna, in Jämtland province. They have completely crumbled into dust at this point. The warmer climate during the last century, which is the reason the tree remnants have now seen the light of day, may therefore be unique in the perspective of many millennia.

The oldest tree, a pine, lived and died on the site of the Kårsa glacier around 12,000 years ago. The area is 400-450 meters above today's timberline. This discovery places the thawing of ice at the end of the latest ice age in an entirely new perspective.

"Previous research indicated that Lapland was covered with ice at this time. These finds show that the ice melted and life returned much earlier than we previously thought," says Leif Kullman.

The researchers are now continuing their examination of glaciers in northern Lapland and Västerbotten (West Bothnia). This ongoing research is part of a larger project that comprises glaciers throughout the entire range of mountains in Sweden. The project is funded by the Swedish Research Council and is directed by Professor Leif Kullman, Umeå University.

For further information and photos, please contact:
Leif Kullman, professor of physical geography
Phone: +46 (0)90-786 68 93; cell phone: +46 (0)70-5641848
E-post: leif.kullman@emg.umu.se
Pressofficer Karin Wikman; karin.wikman@adm.umu.se; +46-70 610 08 05

Karin Wikman | idw
Further information:
http://www.umu.se
http://www.vr.se

Further reports about: Kårsa Glacier Shrinking glaciers forests ice age old tree warmer climate

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>