Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shark Teeth Analysis Provides Detailed New Look at Arctic Climate Change

11.07.2014

A new study shows that some shark species may be able to cope with the decreasing salinity of Arctic waters that may come with rising temperatures.

The Arctic today is best known for its tundra and polar bear population, but it wasn’t always like that. Roughly 53 to 38 million years ago during what is known as the Eocene epoch, the Arctic was more similar to a huge temperate forest with brackish water, home to a variety of animal life, including ancestors of tapirs, hippo-like creatures, crocodiles and giant tortoises. Much of what is known about the region during this period comes from well-documented terrestrial deposits. Marine records have been harder to come by.


Robert Kozloff?University of Chicago

Sora Kim has analyzed oxygen 18 and oxygen 16—two isotopes of the oxygen atom that contain only slight subatomic variations—of fossil and modern sharks teeth for insights into the potential adaptability of sand tigers to global warming. These teeth come from the Eocene epoch, which ended approximately 38 million years ago.

A new study of shark teeth taken from a coastal Arctic Ocean site has expanded the understanding of Eocene marine life. Leading the study was Sora Kim, the T.C. Chamberlin Postdoctoral Fellow in Geophysical Sciences at the University of Chicago, in coordination with Jaelyn Eberle at the University of Colorado, Boulder, and their three co-authors. Their findings were published online June 30 by the journal Geology.

The Arctic is of special interest today because it is increasing in temperature at twice the global rate. According to Kim, past climate change in the Arctic can serve as a proxy to better understand our current climate change and aid future predictions. The Eocene epoch, she said, is like a “deep-time analogue for what’s going to happen if we don’t curb CO2 emissions today, and potentially what a runaway greenhouse effect looks like.”

Before this study, marine records primarily came from deep-sea cores pulled from
a central Arctic Ocean site, the Lomonosov Ridge. Kim and Eberle studied shark teeth from a new coastal site on Banks Island. This allowed them to better understand the changes in ocean water salinity across a broader geographic area during a time of elevated global temperatures. Shark teeth are one of the few available vertebrate marine fossils for this time period. They preserve well and are incredibly abundant.

To arrive at their results, Kim isolated and measured the mass ratio of oxygen isotopes 18 to 16 found in the prepared enameloid (somewhat different from human tooth enamel) of the shark teeth. Sharks constantly exchange water with their environment, so the isotopic oxygen ratio found in the teeth is directly regulated by water temperature and salinity. With assumptions made about temperatures, the group was able to focus on extrapolating salinity levels of the water.

The results were surprising. “The numbers I got back were really weird,” Kim said. “They looked like fresh water.” The sand tiger sharks she was studying are part of a group called lamniform sharks, which prefer to stay in areas of high salinity.

“As more freshwater flows into the Arctic Ocean due to global warming, I think we are going to see it become more brackish,” said Eberle, associate professor of geological sciences at CU-Boulder. “Maybe the fossil record can shed some light on how the groups of sharks that are with us today may fare in a warming world.”

Because the teeth are 40 to 50 million years old, many tests were run to eliminate any possible contaminates, but the results were still the same. These findings suggest that sharks may be able to cope with rises in temperature and the subsequent decrease of water salinity. It has long been known that sharks are hardy creatures. They have fossil records dating back some 400 million years, surviving multiple mass extinctions, and have shown great ecological plasticity thus far.

Additionally, these results provide supporting evidence for the idea that the Arctic Ocean was most likely isolated from global waters.

“Through an analysis of fossil sand tiger shark teeth from the western Arctic Ocean, this study offers new evidence for a less salty Arctic Ocean during an ancient ‘greenhouse period,’” said Yusheng (Chris) Liu, program director in the National Science Foundation (NSF)’s Division of Earth Sciences, which co-funded the research with NSF’s Division of Polar Programs. “The results also confirm that the Arctic Ocean was isolated during that long-ago time.”

While Kim has hopes to expand her research both geographically and in geologic time in an effort to better understand the ecology and evolution of sharks, she remarked that “working with fossils is tricky because you have to work within the localities that are preserved. “You can’t always design the perfect experiment.”
— Isabella Penido

Steve Koppes | newswise
Further information:
http://www.uchicago.edu

Further reports about: Arctic Change Climate Eocene Ocean fossils isotopic Oxygen sharks teeth temperature

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>