Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several metre thick ice cocktail beneath coastal Antarctic sea ice

04.02.2016

AWI researchers develop new method to detect platelet ice over large distances

Sea ice physicists of the Alfred Wegener Institute (AWI) have developed a new method that allows them for the first time to efficiently determine the distribution and thickness of what researchers call a sub-ice platelet layer.


Close-up

M. Hoppmann / Alfred Wegener Institute

This several metre thick layer of delicate ice crystals is predominantly found beneath coastal Antarctic sea ice, and at present knowledge about its spatial distribution is very limited. This phenomenon, which is also known as platelet ice, is of central importance in the coastal regions of the Antarctic, influencing sea ice properties and the associated ecosystem in various ways, and serving as an indicator for the state of melting ice shelves. The researchers published their results with open access in the current issue of the journal Geophysical Research Letters.

Every winter in the Southern Hemisphere, the ocean around the Antarctic continent freezes. The “normal” sea ice formed on the surface of the Southern Ocean, however, is not the only ice that forms in the sea. During the same period, a remarkable habitat develops hidden beneath the solid sea ice cover: a several metre thick layer of loose ice crystals. Some areas underneath sea ice in coastal Antarctica then resemble a cocktail glass filled with crushed ice – the difference being that the crystals in this layer grow to disc-shaped, millimetre-thin platelets.

This phenomenon was discovered by researchers more than a century ago, but for a long time, little was known about this peculiar ice type. In the past decades, researchers have discovered that platelet ice plays a significant role in the sea ice mass balance in some regions around the Antarctic, and that it represents a unique and productive habitat. Countless algae thrive on the platelets, which are food for a myriad of small crustaceans and fish that seek shelter between the platelets.

Knowledge about the thickness and extent of platelet ice is still very limited, because of its “hidden” nature. Most of the time, researchers only came across it by chance – for example, while drilling through the sea ice to measure its thickness. A team of researchers of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), the Jacobs University Bremen and Uppsala University have now succeeded to develop an efficient method to determine the distribution, thickness and volume of platelet ice over large distances.

As the scientists report in a recent issue of the journal Geophysical Research Letters, they used a so-called multifrequency EM device to determine the platelet ice volume. EM is short for "electromagnetic induction sounding", a geophysical method sensitive to the electrical conductivities within the subsurface.

The electrical conductivity of solid sea ice, for instance, differs significantly from that of the salty seawater underneath. This means that, using the EM device, scientists are able to identify the transition from sea ice to seawater, thus allowing them to calculate the ice thickness.

However, the transition between the solid sea ice and the loose platelet layer is much less pronounced. Conventional EM methods that only use a single frequency are unable to distinguish the platelet layer from sea ice or seawater. Using several different frequencies, scientists are now able to reliably determine these transitions without having to drill holes into the ice and measuring the thicknesses using measuring tapes.

"We were really surprised by our own results," says AWI sea ice physicist and co-author Dr Mario Hoppmann. "With our new approach, we weren’t only just able to determine the thickness of the platelet layer. We were even able to calculate the fraction of ice within this layer by subtracting the volume of sea water in between the platelets."

In order to collect as much data as possible, the researchers conducted several surveys across large parts of the frozen Atka Bay. The bay is located in the Weddell Sea, near the German Antarctic research station Neumayer III. The researchers placed the multifrequency EM instrument in a kayak, which in turn was attached to a snowmobile. They moved the tandem across the sea ice of Atka Bay for many days and several hours at a time.

"One of the things we noticed was that the evolution of the platelet layer has an annual rhythm," says Mario Hoppmann. In June, at the beginning of the Antarctic winter, platelets begin to accumulate under the sea ice. Over the course of the winter, the layer grows; by the end of the winter, in December, it is several meters thick, after which it shrinks again during the summer.

The researchers are convinced that platelet ice plays an important role in the ice regime of the Antarctic. After all, the seasonal sea ice in Atka Bay freezes to an average thickness of two metres in the winter. The platelet layer underneath, however, reaches an average thickness of five metres over the course of a year. In some places it was up to ten metres thick. This means that a significant amount of the ice exists in the form of platelets. "To understand the situation of the Antarctic sea ice and to assess a possible influence of climate change, it is likely that more account must be taken of platelet ice," says Mario Hoppmann.

It is not currently possible to properly assess the significance of the platelet ice across the Antarctic. The new findings give cause for hope that its distribution and therefore also its role will soon be understood to the same extent as its formation.

Platelets, which later accumulate in the platelet layer, form beneath the ice shelves of the Antarctic, those parts of the mighty ice sheet that float on the sea. The platelet ice cycle begins as salt-rich water in the coastal ocean sinks and slides underneath the ice shelves, which it then slowly melts. The result: The melted fresh water mixes with the salty ocean water underneath the ice shelves. On the surface of the sea, this water mix would freeze immediately, because its temperature is well below the surface freezing point. Because of the high water pressure in the depth of the sea, the mix initially stays liquid – physicists call this a "potentially supercooled" state.

Because this water mass has a lower density than the surrounding seawater, it slowly rises at the base of the ice shelves. The water pressure decreases and as soon as a critical shallower water depth is reached, tiny little ice crystals start to form. These then grow to form those delicate ice platelets that later accumulate as platelet ice underneath the sea ice at the surface.

Notes for Editors:
The study was published in open access format under the following title in the journal Geophysical Research Letters: P. A. Hunkeler, M. Hoppmann, S. Hendricks, T. Kalscheuer & R. Gerdes, 2015: A glimpse beneath Antarctic sea ice: Platelet layer volume from multifrequency electromagnetic induction sounding. Geophysical Research Letters. DOI: 10.1002/2015GL065074; Link: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065074/full

Printable photographs and video material can be found in the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press.html

Your scientific contact at the Alfred Wegener Institute in Bremerhaven is Dr Mario Hoppmann, phone +49 (0)471 4831-2907 (e-mail: Mario.Hoppmann(at)awi.de).

Your contact in the Communications and Media Department is Sina Löschke, phone +49 (0)471 4831-2008 (e-mail: medien(at)awi.de).

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>