Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of the calcerous ooze revealed

28.02.2017

Study advances understanding the stories of ancient climate told by tiny shells

How can we know anything about the carbon dioxide levels in the atmosphere in earth's deep past? Tiny bubbles trapped in ice provide samples of ancient air but this record goes back only 800,000 years. To reach further back, scientists must depend on climate proxies, or measurable parameters that vary systematically with climate conditions.


Coccolithophores surround themselves with platelets of calcium carbonate, shown here greatly magnified. Because calcium carbonate is transparent, the platelet's don't compromise the organism's ability to photosynthesize. The scale bar represents a millionth of a meter.

Credit: Hermoso and McClelland

The standard proxy is the oxygen isotope ratios in tiny zooplankton called foraminifera. There are more than 50,000 different species of these bugs, 10,000 living and 40,000 extinct. Because the foraminifera shells fairly faithfully record the ratios of oxygen isotopes in seawater, they provide a signal that can be used to infer ancient temperatures.

But there's another potential proxy gathering dust in the sedimentary archive: tiny phytoplankton called coccolithophores. They are found in large numbers throughout the sunlight layer of the ocean. Their tiny, hub-cap-like plates, called coccoliths, are the main component of the Chalk, the Late Cretaceous formation that outcrops at the White Cliffs of Dover, and a major component of the "calcareous ooze" that covers much of the seafloor.

Because coccolithophores are primary producers that are important to ocean biogeochemistry they are well-studied organisms. They are less used for paleoceanographic reconstructions than foraminifera, however, because they create their plates inside their cells rather than precipitating them directly from seawater. This means there is a large biological overprint on the climate signal that makes it difficult to interpret.

But new findings, published in the Feb. 28 issue of the journal Nature Communications, could change that. Recreating the prehistoric environment in laboratory conditions, a team of scientists from the University of Oxford, including Harry McClelland, now a postdoctoral research associate at Washington University in St. Louis, and the Plymouth Marine Laboratory grew several different species of this algae, each with varying carbon levels.

With this experimental data, they created a mathematical model of carbon fluxes in the coccolithophore cell that accounts for previously unexplained variations in the isotopic composition of the platelets the algae produce and provides the framework for the development of a new set of proxies.

Properly understood, the "noise" may itself be a signal. Coccoliths provide a window on ancient biology as well as climate, McClelland said.

Heavy and light coccoliths

McClelland explains that the scientists began with a bit of a mystery. Coccoliths had been divided into two groups -- a light and a heavy group -- based on whether the platelets they precipitated was poorer or richer in the rarer heavy isotope of carbon compared to calcium carbonate formed by physical (abiotic) processes. The departures from abiotic norm were "both large and enigmatic," McClelland said.

Heavy isotopes undergo all of the same chemical reactions as light isotopes, but, simply because they have slightly different masses, they do so at slightly different rates. These tiny differences in reaction rates cause the products of reactions to have different isotope ratios than the source materials.

The coccolithophores undertake the relevant carbon chemistry in two different cellular compartments: the chloroplast, where photosynthesis takes place, and coccolith vesicles, where platelets are precipitated. The main problem with deciphering their isotopic record the algae leave is that these two processes drive the isotopic composition of the carbon pool in opposite directions.

In their chloroplasts, coccolithophores take inorganic carbon and build it into biological molecules. This process proceeds far more rapidly for the CO2 containing the light isotope of carbon, causing the isotopic composition to drift to the heavier variant. Platelets growing in coccolith vesicles, on the other hand, preferentially incorporate the heavier form of carbon from the substrate pool.

The team chose a number of coccolithophore species, both light and heavy, and grew them in the laboratory -- "it's not all that different from gardening, McClelland said" -- and then constructed a mathematical model of the cell that could predict the isotopic outcomes across all species for which data was available.

They were able to show that the ratio of calcification to photosynthesis determines whether the platelets are isotopically heavier or lighter than abiogenic calcium carbonate. They were able to explain the size of the departure as well its direction.

For McClelland, the most exciting part of the study is that it opens a window on the biology of ancient creatures. When people use foraminifera as a climate proxy, he said, they usually pick one species and assume a constant biological effect, or offset. But we can see the impact of varying biology in the chemical signatures of the coccolithophores.

With more research, said McClelland said, coccolith-based isotopic ratios could be developed into a paleobarometer that would help us to understand the climate system's sensitivity to atmospheric carbon dioxide.

"Our model allows scientists to understand algal signals of the past, like never before. It unlocks the potential of fossilized coccolithophores to become a routine tool, used in studying ancient algal physiology and also ultimately as a recorder of past CO2 levels," said senior author Rosalind Rickaby, professor of biogeochemistry at Oxford.

###

The study was funded by the National Environment Research Council and the European Research Council.

Media Contact

Diana Lutz
dlutz@wustl.edu
314-935-5272

 @WUSTLnews

http://www.wustl.edu 

Diana Lutz | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>