Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea-level rise too big to be pumped away

10.03.2016

Future sea-level rise is a problem probably too big to be solved even by unprecedented geo-engineering such as pumping water masses onto the Antarctic continent. The idea has been investigated by scientists at the Potsdam Institute for Climate Impact. While the pumped water would certainly freeze to solid ice, the weight of it would speed up the ice-flow into the ocean at the Antarctic coast. To store the water for a millenium, it would have to be pumped at least 700 kilometer inland, the team found. Overall that would require more than one tenth of the present annual global energy supply to balance the current rate of sea-level rise.

“We explored a way to at least delay the rise of sea level we can no longer avoid by even the strictest climate-change mitigation strategies. This is estimated to reach about 40 cm by the end of the century,” says lead-author Katja Frieler.


Waves rolling towards the shore. Photo: thinkstock

“Our approach is definitely extreme, but so is the challenge of sea-level rise.” Burning fossil fuels leads to greenhouse-gas emissions that drive up global temperatures. Consequently, the thermal expansion of ocean water and the melting of glaciers and ice-sheets slowly raise sea levels, which will continue for millennia. Under unabated warming, sea level rise may exceed 130 centimeters by 2100.

+++Sacrificing Antarctica for saving Bangladesh?+++

“This is huge. Local adaptation, for instance building dikes, will not be physically possible or economically feasible everywhere,” Frieler says. “Protection may depend on your economic situation – so New York might be saved, but sadly not Bangladesh, and this clearly raises an equity issue,” she adds.

“Hence the interest in a universal protection measure. We wanted to check whether sacrificing the uninhabited Antarctic region might theoretically enable us to save populated shores around the world.” Rising oceans are already increasing storm surge risks, threatening millions of people worldwide, and in the long run can redraw the planet’s coastlines.

The scientists addressed the problem from an ice-dynamics perspective, using state-of-the-art computer simulations of Antarctica. Since the ice is continually moving, ocean water put on its surface can only delay sea-level rise – and if it is placed too close to the coast, ice-sheet mass loss and thus sea-level rise after some time could even increase, they found. As a consequence the water has to be pumped a long way inland onto the ice sheet.

+++“Even if this was feasible, it would only buy time”+++

The Antarctic ice sheet is up to 4000 meters high, and that would mean an inconceivable engineering effort. Pumping so much water that high up onto the ice sheet requires enormous amounts of energy. Antarctica is very windy, so the power for the pumping could in principle be generated by wind turbines – yet this would require building roughly 850.000 wind-energy plants onto the ice continent. The costs are expected to be much higher than those associated with local adaptation in other studies, though these measures by definition are limited in scope and scale, the scientists state.

“The magnitude of sea-level rise is so enormous, it turns out it is unlikely that any engineering approach imaginable can mitigate it,” concludes co-author Anders Levermann, head of Global Adaptation Strategies at PIK and scientist at Columbia University’s Lamont Doherty Earth Observatory. “Even if this was feasible, it would only buy time – when we stop the pumping one day, additional discharge from Antarctica will increase the rate of sea-level rise even beyond the warming-induced rate. This would mean putting another sea-level debt onto future generations.” Also, the most sensitive coastal ecosystems of Antarctica would of course be seriously affected by this measure.

+++Greenhouse-gas reductions, local coastal protection, and abandonment+++

If possible at all, delaying the rise by storing water on Antarctica would only show significant effects in a scenario of ambitious climate policy, strictly limiting global warming. “If we’d continue to do business as usual and churn out emissions,” says Levermann, “not even such an immense macro-adaptation project as storing water on Antarctica would suffice to limit long-term sea-level rise – more than 50 meters in the very long term without climate change mitigation. So either way, rapid greenhouse-gas emission reductions are indispensable if sea-level rise is to be kept manageable. In any way substantial investment into long-term local coastal protection will be required if we want to avoid a stepwise abandonment of coastal areas. ”

Article: Frieler, K., Mengel, M., Levermann, A. (2016): Delaying future sea-level rise by storing water in
Antarctica. Earth System Dynamics

Weblink to the article once it is published: http://www.earth-syst-dynam.net/

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>