Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea-level rise past and future: robust estimates for coastal planners

23.02.2016

Sea-levels worldwide will likely rise by 50 to 130 centimeters by the end of this century if greenhouse gas emissions are not reduced rapidly. This is shown in a new study led by the Potsdam Institute for Climate Impact Research that, for the first time, combines the two most important estimation methods for future sea-level rise and yields a more robust risk range. A second study, like the first one to be published in the US Proceedings of the National Academy of Sciences, provides the first global analysis of sea-level data for the past 3000 years. It confirms that during the past millennia sea-level has never risen nearly as fast as during the last century.

Together, the two studies give critical information for coastal planning. For expert assessments of future sea-level rise, the authors make the tool available online.


Waves rolling towards the shore. Photo: thinkstock

“With all the greenhouse-gases we already emitted, we cannot stop the seas from rising altogether, but we can substantially limit the rate of the rise by ending the use of fossil fuels,” says Anders Levermann, Research Domain Co-Chair for Adaptation at the Potsdam-Institute for Climate Impact Research (PIK), scientist at Columbia University’s Lamont-Doherty Earth Observatory, and co-author of the study on future sea-level rise. “We try to give coastal planners what they need for adaptation planning, be it building dikes, designing insurance schemes for floodings, or mapping long-term settlement retreat.”

+++Even if the Paris Agreement is implemented, adaptation is a challenge+++

The scientists will make the computer simulation code available online so experts can use the information and the estimation tool for risk assessments. Even if ambitious climate policy follows the 2015 Paris Agreement, sea levels are projected to increase by 20 to 60 centimeters by 2100 – hence the relevance for coastal protection. “This is quite a challenge, but less expensive than adaptation to unabated sea-level rise which in some regions is impossible”, Levermann adds. “If the world wants to avoid the greatest losses and damages, it now has to rapidly follow the path laid out by the UN climate summit in Paris a few weeks ago.”

For future sea-level rise, the scientists combine two approaches. To forecast sea-level rise, some scientists use process-based computer simulations that calculate the contribution of melting glaciers, ice sheet mass loss and the thermal expansion of sea-water from physical laws – warmer water takes more space. These simulations are computationally costly and slow. As an alternative, statistical analyses have been used to assess future sea-level rise quickly at low computational cost. “We designed our tool in a way it is consistent both with the past observations of sea-level rise and the long-term physical processes in the different elements of the Earth system,” says lead-author Matthias Mengel from PIK. “Importantly, our calculation method is fast, which makes it easy to reproduce and allows for a lot of simulation runs to provide probabilities of sea-level rise."

The likely future sea-level rise cannot be brought down to just one number, but is represented as a range, which at first sight might seem large. “The range allows for a risk assessment,” says Ben Marzeion from the University of Bremen, Germany. “Coastal Planners need to know how a reasonable worst-case scenario as well as a well-founded best-case scenario look like to weigh chances and costs. The best available science is now converging towards a common uncertainty range of future sea-level rise. Curbing greenhouse gas emissions now gives us the chance to prevent sea level rise to accelerate further.”

+++During past millennia sea-level has never risen as fast as during the last century+++

The study on future sea-level rise turns out to be confirmed by the other one on past sea-level rise: they yield nearly identical sea-level rise estimates for the 21st century. Also, the new estimates overlap with those of the latest IPCC report.

“Our study is for sea level what the now well-confirmed famous ‘hockey stick’ diagram was for global temperature,” says Stefan Rahmstorf, co-author of the paper on past sea-level rise and Co-Chair of PIK’s research domain Earth System Analysis. “We can confirm what earlier, more local sea-level data already suggested: during the past millennia sea-level has never risen nearly as fast as during the last century.” Based on the analysis of the past millennia of natural sea-level variations, the new study was also able to estimate how much human activities have contributed to modern sea-level rise: Almost certainly more than half of the 20th Century rise has been caused by human activity, possibly even all of it.

Confirming previous assumptions, as boring as it might sound, is of key relevance for the progress of science. “We can now show the effect in an unprecedentedly robust way, based upon the statistical analysis of a global database of regional sea-level reconstructions,” says Rahmstorf. “The new sea-level data confirm once again just how unusual the age of modern global warming due to our greenhouse gas emissions is – and they demonstrate that one of the most dangerous impacts of global warming, rising seas, is well underway.”

Article on future sea-level rise: Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B., Winkelmann, R. (2016): Future sea-level rise constrained by observations and long-term commitment. Proceedings of the National Academy of Sciences (PNAS) [DOI:10.1073/pnas.1500515113]

Weblink to the article on future sea-level rise once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1500515113

Weblink to source code for future sea-level rise approximation tool: https://github.com/matthiasmengel/sealevel

Article on past sea-level rise: Kopp, R.E., Kemp, A.C., Bittermann, K., Horton, B.P., Donnelly, J.P., Gehrels, W.R., Hay, C.C., Mitrovica, J.X., Morrow, E.D., Rahmstorf, S. (2016): Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences (PNAS) [DOI:10.1073/pnas.1517056113]

Weblink to the article on past sea-level rise once it is published: http://www.pnas.org/cgi/doi/10.1073/pnas.1517056113

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>