Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover relationship between lavas erupting on sea floor and deep-carbon cycle

03.05.2013
Scientists from the Smithsonian and the University of Rhode Island have found unsuspected linkages between the oxidation state of iron in volcanic rocks and variations in the chemistry of the deep Earth. Not only do the trends run counter to predictions from recent decades of study, they belie a role for carbon circulating in the deep Earth. The team's research was published May 2 in Science Express.

Elizabeth Cottrell, lead author and research geologist at the Smithsonian's National Museum of Natural History, and Katherine Kelley at the University of Rhode Island's Graduate School of Oceanography measured the oxidation state of iron, which is the amount of iron that has a 3+ versus a 2+ electronic charge, in bits of magma that froze to a glass when they hit the freezing waters and crushing pressures of the sea floor.


Molten magma erupted onto the seafloor freezes to glass that contains clues to its origin in Earth's deep interior and ancient past (field of view ~1 cm). Volcanic glasses like this one may reveal a link between Earth's oxidation state and the deep carbon cycle.

Credit: Glenn Macpherson and Tim Gooding

Due to the high precision afforded by the spectroscopic technique they used, the researchers found very subtle variations in the iron-oxidation state that had been overlooked by previous investigations. The variations correlate with what Cottrell described as the "fingerprints" of the deep Earth rocks that melted to produce the lavas—but not in the way previous researchers had predicted.

The erupted lavas that have lower concentrations of 3+ iron also have higher concentrations of elements such as barium, thorium, rubidium and lanthanum, that concentrate in the lavas, rather than staying in their deep Earth home. More importantly, the oxidation state of iron also correlates with elements that became enriched in lavas long ago, and now, after billions of years, show elevated ratios of radiogenic isotopes. Because radiogenic isotopic ratios cannot be modified during rock melting and eruption, Cottrell called this "a dead ringer for the source of the melt itself."

Carbon is one of the "geochemical goodies" that tends to become enriched in the lava when rocks melt. "Despite is importance to life on this planet, carbon is a really tricky element to get a handle on in melts from the deep Earth," said Cottrell. "That is because carbon also volatilizes and is lost to the ocean waters such that it can't easily be quantified in the lavas themselves. As humans we are very focused on what we see up here on the surface. Most people probably don't recognize that the vast majority of carbon—the backbone of all life—is located in the deep Earth, below the surface—maybe even 90 percent of it."

The rocks that the team analyzed that were reduced also showed a greater influence of having melted in the presence of carbon than those that were oxidized. "And this makes sense because for every atom of carbon present at depth it has to steal oxygen away from iron as it ascends toward the surface," said Cottrell. This is because carbon is not associated with oxygen at depth, it exists on its own, like in the mineral diamond. But by the time carbon erupts in lava, it is surrounded by oxygen. In this way, concludes Cottrell, "carbon provides both a mechanism to reduce the iron and also a reasonable explanation for why these reduced lavas are enriched in ways we might expect from melting a carbon-bearing rock."

Randall Kremer | EurekAlert!
Further information:
http://www.si.edu

More articles from Earth Sciences:

nachricht A Volcanic Binge And Its Frosty Hangover
21.02.2019 | Universität Heidelberg

nachricht Researchers get to the bottom of fairy circles
21.02.2019 | Georg-August-Universität Göttingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>