Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists return from first ever riser drilling operations in seismogenic zone

08.09.2009
The Deep-sea Drilling Vessel CHIKYU successfully completed riser drilling operations on Aug. 31, for IODP Expedition 319, Stage 2 of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE).

The CHIKYU is operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in partnership with the Integrated Ocean Drilling Program. The expedition began with drilling operations at the Kumano Basin, off the Kii Peninsula on May 10, 2009.

Expedition 319 marks the first riser drilling in the history of the scientific ocean drilling program, and the first subseafloor observatory operations for NanTroSEIZE. The expedition was led by four Co-Chief Scientists: Eiichiro Araki, Research Scientist of JAMSTEC; Timothy Byrne, Professor of the University of Connecticut, USA; Lisa McNeill of the University of Southampton, UK; and Demian Saffer, Associate Professor of Geosciences at The Pennsylvania State University, and was joined by scientists from eight countries.

Expedition 319 conducted drilling operations at three drill sites in the Nankai Trough. At the first Site C0009, located directly above the seismogenic zone where great earthquakes occur, scientists conducted the first riser drilling in IODP history and successfully drilled down to a depth of 1,603.7 meters beneath the sea floor. Riser-based drilling allowed the scientists to conduct several scientific operations unprecedented in IODP, including 12 successful measurements of stress and pore fluid pressure in the subsurface using the dynamic formation testing tool, a two ship seismic experiment using a dense seismic array in the borehole, real-time mud gas analysis, and laboratory analyses of drill cuttings that are generated as the drill bit penetrates through the formation. In addition, 57.87 meters of core sample (a cylindrical geological sample) were obtained from depths between 1,510 and 1,593.9 meters below the seafloor. The scientific party developed several new techniques for analyzing these materials, which will be essential for future riser-based drilling.

The stress and pore pressure measurements are critical to understanding the mechanics of active tectonic fault zones, but have previously been unavailable in the scientific ocean drilling. Successful deployment of the test tool to measure these quantities deeper within the upper plate and near major fault zones in future riser holes will constitute a major breakthrough in understanding subduction zone fault earthquakes.

Also a walk-away Vertical Seismic Profiling (VSP) involving the CHIKYU and JAMSTEC's Research Vessel KAIREI was conducted to characterize the structure of the seismogenic plate boundary below the borehole by utilizing an array of seismic sensors temporarily clamped inside the borehole. Air guns towed by the KAIREI generated seismic waves, and reflected seismic waves from the fault system were clearly observed by the borehole sensors. Experience from the VSP experiment will open the way to in-depth study of seismogenic faults that are beyond the reach of drilling.

At a second borehole (Site C0010), drilling crossed one of the major faults in the plate boundary, known as the mega-splay fault, at a depth of about 400 meters below the seafloor. This fault is a prime candidate for tsunami generation, and may have slipped in historical great earthquakes. During the drilling operation, scientists documented rock physical properties and gained information about stresses in the formation. The borehole was then cased and utilized for observatory operations for future long-term borehole monitoring. These included lowering of test instruments, as well as emplacement of a temporary sensor package that will monitor conditions in the fault zone in the next few years.

The new data from Expedition 319 indicate that the stresses in the upper plate reflect the forces acting on the earthquake generating fault zones below. The direction of the maximum stresses follows the direction of tectonic plate motion in most of the region, but rotates drastically in a very narrow region above the mega-splay fault. In addition, the rock units, and in particular the ages of the rocks obtained by examining microfossils and the sediment types observed in the drill cuttings, provide new constraints on the geologic history of the major fault zone and its activity level.

The CHIKYU is now berthed at the Port of Yokkaichi, where it is preparing for IODP Expedition 322 scheduled to sail on Sept. 4. Operations will include core sampling and logging for all layers in the formation, with an aim to better understand the initial state of geological input materials before they are entering the seismogenic zone.

Editor's note:

The Integrated Ocean Drilling Program (IODP) is an international marine research drilling program dedicated to advancing scientific understanding of Earth by monitoring, sampling, and instrumenting subseafloor environments. Through multiple platforms, preeminent scientists explore IODP principal themes: the deep biosphere, environmental change, and solid Earth cycles. IODP has operated since October 2003, funded jointly by the Japan Ministry of Education, Culture, Sports, Science and Technology and the U.S. National Science Foundation. Additional support is provided by the 17-member European Consortium of Ocean Research Drilling, the People's Republic of China, the Republic of Korea, Australia, India, and New Zealand. http://www.iodp.org

To learn more about NanTroSEIZE, visit http://www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/index.html or access the NanTroSEIZE media kit at http://www.iodp.org/NanTroSEIZE-Media-Kit/3

Find more information on riser drilling at http://www.iodp.org/riser-vessel/.

Contacts:
Toru Nakamura
press@jamstec.go.jp
Manager of Press office, JAMSTEC
IODP Management International IODP-MICommunication@iodp.org

Raesah Et'Tawil | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>