Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint great-earthquake hot spots

05.12.2012
The world’s largest earthquakes occur at subduction zones – locations where a tectonic plate slips under another.
But where along these extended subduction areas are great earthquakes most likely to happen? Scientists have now found that regions where ‘scars’ on the seafloor, called fracture zones, meet subduction areas are at higher risk of generating powerful earthquakes. The results are published today in Solid Earth, an Open Access journal of the European Geosciences Union (EGU).

“We find that 87% of the 15 largest (8.6 magnitude or higher) and half of the 50 largest (8.4 magnitude or higher) earthquakes of the past century are associated with intersection regions between oceanic fracture zones and subduction zones,” says Dietmar Müller, researcher at the University of Sydney in Australia and lead author of the Solid Earth paper. The connection is less striking for smaller earthquakes.

Map showing subduction zones and oceanic fracture zones. The blue bands are subduction interfaces – the parts of the subduction zone where the subducting plates are physically ‘grinding’ against the overriding plates. Coloured in red are the areas where oceanic fracture zones intersect these interfaces, which have higher probability of generating great earthquakes.

Credit: Müller and Landgrebe (2012)

Powerful earthquakes related to these intersection regions include the destructive 2011 Tohoku-Oki and 2004 Sumatra events.

“If the association we found were due to a random data distribution, only about 25% of great subduction earthquakes should coincide with these special tectonic environments. Therefore, we can rule out that the link we found is just due to chance,” he adds.

The researchers considered about 1,500 earthquakes in their study. They used a database of significant post-1900 events, as well as geophysical data mapping fracture zones and subduction zones, among others. They analysed information from these databases by using a specific data mining method.

“The method was originally developed for analysing online user data,” says Thomas Landgrebe, also involved in the study. “The technique we apply is commonly used to find a few specific items which are expected to be most appealing to an Internet user. Instead, we use it to find which tectonic environment is most suitable for generating great earthquakes.”

Since earthquake generation is a very complex process, the scientists don’t yet have a complete understanding of why great earthquakes prefer the intersection areas. They suggest that it is due to the physical properties of fracture zones, which result in “strong, persistent coupling in the subduction boundaries,” Landgrebe explains. This means that the subduction fault area is locked and thus capable of accumulating stress over long periods of time.

“The connection we have uncovered provides critical information for seismologists to, in the long run, pinpoint particular tectonic environments that are statistically more prone to strong seismic coupling and great earthquake supercycles,” Müller says. An area with earthquake supercycles experiences recurring powerful earthquakes every few centuries or millennia.

Regions that have long earthquake supercycles are usually not picked up as risk areas by seismic hazard maps as these are constructed mainly using data collected after 1900. An example is the area of the 2011 Tohoku-Oki earthquake, which had no record of large earthquakes over the past century and was not predicted to be of significant risk by previous hazard maps.

“The power of our new method is that it does pick up many of these regions and, hence, could contribute to much-needed improvements of long-term seismic hazard maps,” Müller explains.

“Even though we don’t fully understand the physics of long earthquake cycles, any improvements that can be made using statistical data analysis should be considered as they can help reduce earthquake damage and loss of life.”

*Note*
The floor of the Earth's oceans is crossed by underwater mountain systems, or ocean ridges, such as the mid-Atlantic ridge that runs from north to south between the Americas and Africa. These ridges divide two tectonic plates that move apart as lava emerges from the opening, spreading the sea floor. The mid-ocean ridge jogs back and forth at offsets known as transform faults, creating zig-zagged plate boundaries. Fracture zones are scars in the ocean floor left by these transform faults.

*Information for editors*
This research is presented in the paper ‘The link between great earthquakes and the subduction of oceanic fracture zones’ to appear in the EGU Open Access journal Solid Earth on 05 December 2012.

The scientific article is available online, from the publication date onwards, at http://www.solid-earth.net/recent_papers.html. Please contact the EGU Media and Communications Officer if you would like the final version of the paper before the publication date.

The discussion paper (not peer-reviewed) and reviewers comments is available at http://www.solid-earth-discuss.net/4/1229/2012/sed-4-1229-2012.html

The team is composed of Dietmar Müller and Thomas Landgrebe, both of the EarthByte Group, School of Geosciences, University of Sydney (Australia).

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 14 diverse scientific journals, which use an innovative open-access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2013 EGU General Assembly is taking place is Vienna, Austria from 7-12 April. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Dietmar Müller
University of Sydney
Sydney, Australia
Tel: +61-2-9036-6533
Email: dietmar.muller@sydney.edu.au
Bárbara Ferreira
EGU Media and Communications Officer
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Bárbara Ferreira | idw
Further information:
http://www.egu.eu/news/50/scientists-pinpoint-great-earthquake-hot-spots/
http://www.solid-earth-discuss.net/4/1229/2012/sed-4-1229-2012.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>