Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use high-energy particles from space to probe thunderstorms

03.06.2009
Trying to find how thurnderstorms create lightning

Florida Institute of Technology researchers are trying to solve one of the great mysteries in nature: how thunderstorms make lightning. Because, in principle, lightning is a big spark it should behave like other sparks—like the ones created when we touch a door knob on a dry day. Scientists have accumulated evidence, however, that lightning sometimes behaves in very un-spark-like ways.

Lightning can start in regions of thunderstorms that have relatively low electric fields and, so, should create no sparks. Because lightning obviously is made by thunderstorms, scientists are left wondering what they are missing.

Three such scientists, Joseph Dwyer and Hamid Rassoul from Florida Tech and Martin Uman from the University of Florida, recently published a paper in the Journal of Geophysical Research titled, "Remote measurement of thunderstorm electrostatic fields." It describes their new technique to remotely measure thunderstorm electric fields on the ground.

By measuring small radio pulses made by cosmic-rays passing through these storms, they calculate that they can reconstruct the electric fields along the high-energy particle's paths. This could allow them to measure any lightning initiation pockets that might exist.

One idea is that thunderstorms generate big electric fields capable of making sparks, but those strong fields are localized in very small pockets—too small to be easily detected by the balloons and aircraft sent into thunderclouds to measure the fields. Although this seems reasonable, the problem has been how to test it. Indeed, for decades scientists have struggled in vain to find such pockets where lightning might be initiated.

"Cosmic-rays are high-energy particles from outer space that constantly rain down on our planet. They form a natural probe for measuring thunderstorms," explained Dwyer, professor of physics and space sciences, who is leading the research effort. "Thunderstorms are big, violent, and dangerous places. Cosmic-ray air showers allow us to study them from a relatively safe location on the ground."

"It's a daunting task to find these high field regions," explained Rassoul, professor of physics and space sciences. "Thunderstorms are large and the chance that a balloon would find its way into exactly the right place at the right time to catch lightning initiation is small."

This summer at the UF/Florida Tech International Center for Lightning Research and Testing at Camp Blanding, Fla., scientists are conducting experiments to search for these lightning initiation pockets. If successful, researchers will be closer to understanding lightning, a phenomenon that has mystified people for thousands of years.

Karen Rhine | EurekAlert!
Further information:
http://www.fit.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>