Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find methane gas concentrations have returned to near-normal levels

07.01.2011
Calling the results "extremely surprising," researchers from the University of California, Santa Barbara and Texas A&M University report that methane gas concentrations in the Gulf of Mexico have returned to near normal levels only months after a massive release occurred following the Deepwater Horizon oil rig explosion.

Findings from the research study, led by oceanographers John Kessler of Texas A&M and David Valentine of UCSB, were published today in Science Xpress, in advance of their publication in the journal Science. The findings show that Mother Nature quickly saw to the removal of more than 200,000 metric tons of dissolved methane through the action of bacteria blooms that completely consumed the immense gas plumes the team had identified in mid-June. At that time, the team reported finding methane gas in amounts 100,000 times above normal levels. But, about 120 days after the initial spill, they could find only normal concentrations of methane and clear evidence of complete methane respiration.

"What we observed in June was a horizon of deep water laden with methane and other hydrocarbon gases," Valentine said. "When we returned in September and October and tracked these waters, we found the gases were gone. In their place were residual methane-eating bacteria, and a 1 million ton deficit in dissolved oxygen that we attribute to respiration of methane by these bacteria."

Kessler added: "Based on our measurements from earlier in the summer and previous other measurements of methane respiration rates around the world, it appeared that (Deepwater Horizon) methane would be present in the Gulf for years to come. Instead, the methane respiration rates increased to levels higher than have ever been recorded, ultimately consuming it and prohibiting its release to the atmosphere."

While the scientists' research documents the changing conditions of the Gulf waters, it also sheds some light on how the planet functions naturally.

"This tragedy enabled an impossible experiment," Valentine said, "one that allowed us to track the fate of a massive methane release in the deep ocean, as has occurred naturally throughout Earth's history."

Kessler noted: "We were glad to have the opportunity to lend our expertise to study this oil spill. But also we tried to make a little good come from this disaster and use it to learn something about how the planet functions naturally. The seafloor stores large quantities of methane, a potent greenhouse gas, which has been suspected to be released naturally, modulating global climate. What the Deepwater Horizon incident has taught us is that releases of methane with similar characteristics will not have the capacity to influence climate."

The Deepwater Horizon offshore drilling platform exploded on April 20, 2010, about 40 miles off the Louisiana coast. The blast killed 11 workers and injured 17 others. Oil was gushing from the site at the rate of 62,000 barrels per day, eventually spilling an estimated 170 million gallons of oil into the Gulf. The leak was capped on July 15, and the well was permanently sealed on Sept. 19.

The research team collected thousands of water samples at 207 locations covering an area of about 36,000 square miles. The researchers based their conclusions on measurements of dissolved methane concentrations, dissolved oxygen concentrations, methane oxidation rates, and microbial community structure.

Their work was funded by the National Oceanic and Atmospheric Administration (NOAA) through a contract with Consolidated Safety Services Inc., the Department of Energy, and the National Science Foundation. Other members of the research team from UCSB include postdoctoral researcher Molly Redmond; graduate students Stephanie Mendes and Stephani Shusta; and undergraduate students Christie Villanueva and Lindsay Werra.

George Foulsham | EurekAlert!
Further information:
http://www.ucsb.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>