Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover first direct evidence of surface exposed water ice on the moon

22.08.2018

A team of scientists led by researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) found the first direct evidence for the surface exposed water ice in permanently shaded regions (PSRs) of the Moon.

"We found that the distribution of ice on the lunar surface is very patchy, which is very different from other planetary bodies such as Mercury and Ceres where the ice is relatively pure and abundant," said lead author Shuai Li, a postdoctoral researcher at the Hawai'i Institute of Geophysics and Planetology (HIGP) in SOEST. "The spectral features of our detected ice suggest that they were formed by slow condensation from a vapor phase either due to impact or water migration from space."


This image shows the surface exposed water ice (green and blue dots) in the lunar polar regions overlain on the annual maximum temperature (darker=colder, brighter=warmer).

Credit: Shuai Li, University of Hawaii SOEST/ HIGP

The team analyzed data acquired by the Moon Mineralogy Mapper (M3) onboard India's Chandrayaan-1 mission launched in 2008. They found absorption features in the M3 data that were similar to those of pure water ice measured in the laboratory.

Their findings were further validated with other datasets such as the data acquired by the Lunar Orbiter Laser Altimeter (LOLA), The Lyman-Alpha Mapping Project (LAMP), and the Diviner instrument onboard America's Lunar Reconnaissance Orbiter (LRO) mission.  

Before this research, there was no direct evidence of water ice on the lunar surface. Usually, M3 measures reflected light from the illuminated regions on the Moon. At PSRs, there is no direct sunlight reflected so M3 can only measure scattered light in those areas. Without an atmosphere, light bouncing around the surface of the Moon is scattered very weakly, producing a weak signal for the research team to work with.

"This was a really surprising finding," said Li. "While I was interested to see what I could find in the M3 data from PSRs, I did not have any hope to see ice features when I started this project. I was astounded when I looked closer and found such meaningful spectral features in the measurements."

"The patchy distribution and smaller abundance of ice on the Moon compared with other planetary bodies suggest that the delivery, formation, and retention processes of water ice on the Moon are very unique," said Paul Lucey, professor at HIGP and co-author on the study.  

"Given that the Moon is our nearest planetary neighbor, understanding the processes which led to water ice on the Moon provides clues to understand the origin of water on Earth and throughout the solar system," said Li. "A future Moon mission is needed to examine the whole lunar PSRs to map out all water ices and understand the processes which led to water on the Moon. This work provides a roadmap for future exploration of the Moon, particularly the potential of water ice as a resource."

Media Contact

Marcie Grabowski
mworkman@hawaii.edu
808-956-3151

 @UHManoaNews

http://manoa.hawaii.edu 

Marcie Grabowski | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1802345115

More articles from Earth Sciences:

nachricht Most of Earth's carbon was hidden in the core during its formative years
02.04.2020 | Smithsonian

nachricht A sensational discovery: Traces of rainforests in West Antarctica
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>