Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover carbonate rocks are unrecognized methane sink

15.10.2014

Since the first undersea methane seep was discovered 30 years ago, scientists have meticulously analyzed and measured how microbes in the seafloor sediments consume the greenhouse gas methane as part of understanding how the Earth works.

The sediment-based microbes form an important methane “sink,” preventing much of the chemical from reaching the atmosphere and contributing to greenhouse gas accumulation. As a byproduct of this process, the microbes create a type of rock known as authigenic carbonate, which while interesting to scientists was not thought to be involved in the processing of methane.

That is no longer the case. A team of scientists has discovered that these authigenic carbonate rocks also contain vast amounts of active microbes that take up methane. The results of their study, which was funded by the National Science Foundation, were reported today in the journal Nature Communications.

“No one had really examined these rocks as living habitats before,” noted Andrew Thurber, an Oregon State University marine ecologist and co-author on the paper. “It was just assumed that they were inactive. In previous studies, we had seen remnants of microbes in the rocks – DNA and lipids – but we thought they were relics of past activity. We didn’t know they were active.

“This goes to show how the global methane process is still rather poorly understood,” Thurber added.

Lead author Jeffrey Marlow of the California Institute of Technology and his colleagues studied samples from authigenic compounds off the coasts of the Pacific Northwest (Hydrate Ridge), northern California (Eel River Basin) and central America (the Costa Rica margin). The rocks range in size and distribution from small pebbles to carbonate “pavement” stretching dozens of square miles.

“Methane-derived carbonates represent a large volume within many seep systems and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound,” said Marlow, a geobiology graduate student in the lab of Victoria Orphan of Caltech.

These assemblages are also found in the Gulf of Mexico as well as off Chile, New Zealand, Africa, Europe – “and pretty much every ocean basin in the world,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The study is important, scientists say, because the rock-based microbes potentially may consume a huge amount of methane. The microbes were less active than those found in the sediment, but were more abundant – and the areas they inhabit are extensive, making their importance potential enormous. Studies have found that approximately 3-6 percent of the methane in the atmosphere is from marine sources – and this number is so low due to microbes in the ocean sediments consuming some 60-90 percent of the methane that would otherwise escape.

Now those ratios will have to be re-examined to determine how much of the methane sink can be attributed to microbes in rocks versus those in sediments. The distinction is important, the researchers say, because it is an unrecognized sink for a potentially very important greenhouse gas.

“We found that these carbonate rocks located in areas of active methane seeps are themselves more active,” Thurber said. “Rocks located in comparatively inactive regions had little microbial activity. However, they can quickly activate when methane becomes available.

“In some ways, these rocks are like armies waiting in the wings to be called upon when needed to absorb methane.”

The ocean contains vast amounts of methane, which has long been a concern to scientists. Marine reservoirs of methane are estimated to total more than 455 gigatons and may be as much as 10,000 gigatons carbon in methane. A gigaton is approximate 1.1 billion tons.

By contrast, all of the planet’s gas and oil deposits are thought to total about 200-300 gigatons of carbon.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

MEDIA CONTACT:

Mark Floyd,
541-737-0788

Andrew Thurber,

541-737-4500,

athurber@coas.oregonstate.edu

Andrew Thurber | Eurek Alert!
Further information:
http://oregonstate.edu/ua/ncs/archives/2014/oct/scientists-discover-carbonate-rocks-are-unrecognized-methane-sink

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>