Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist proposes explanation for puzzling property of night-shining clouds at the edge of space

29.09.2008
Collaborative project may lead to revolutionary changes

An explanation for a strange property of noctilucent clouds--thin, wispy clouds hovering at the edge of space at 85 km altitude--has been proposed by an experimental plasma physicist at the California Institute of Technology (Caltech), possibly laying to rest a decades-long mystery.

Noctilucent clouds, also known as night-shining clouds, were first described in 1885, two years after the massive eruption of Krakatoa, a volcanic island in Indonesia, sent up a plume of ash and debris up to 80 km into Earth's atmosphere. The eruption affected global climate and weather for years and may have produced the first noctilucent clouds.

The effects of Krakatoa eventually faded, but the unusual electric blue clouds remain, nestled into a thin layer of Earth's mesosphere, the upper atmosphere region where pressure is 10,000 times less than at sea level. The clouds, which are visible during the deep twilight, are most often observed during the summer months at latitudes from 50 to 70 degrees north and south--although in recent years they have been seen as far south as Utah and Colorado. Noctilucent clouds are a summertime phenomenon because, curiously, the atmosphere at 85 km altitude is coldest in summer, promoting the formation of the ice grains that make up the clouds.

"The incidence of noctilucent clouds seems to be increasing, perhaps because of global warming," says Paul M. Bellan, a professor of applied physics at Caltech.

Twenty-five years ago, researchers at Poker Flat, Alaska, discovered that the clouds were highly reflective to radar. This unusual property has long puzzled scientists. Bellan, reporting in the August issue of the Journal of Geophysical Research-Atmospheres, now has an explanation: the ice grains in noctilucent clouds are coated with a thin film of metal, made of sodium and iron. The metal film causes radar waves to reflect off ripples in the cloud in a manner analogous to how X-rays reflect from a crystal lattice.

Sodium and iron atoms collect in the upper atmosphere after being blasted off incoming micrometeors. These metal atoms settle into a thin layer of vapor that sits just above the altitude at which noctilucent clouds occur. Astronomers recently have been using the sodium layer to create laser-illuminated artificial guide stars for adaptive optics telescopes that remove the distorting affects of atmospheric turbulence to produce clearer celestial images.

Measurements of the density of sodium and iron atomic vapor layers show that the metal vapor is depleted by over 80 percent when noctilucent clouds are present. "Noctilucent clouds have been shown to act very much like a flycatcher for sodium and iron atoms," Bellan says. Indeed, in laboratory experiments, other researchers have found that at the frigid temperatures (-123 degrees Celsius) within noctilucent clouds, atoms in sodium vapor quickly become deposited on the surface of ice to form a metallic film.

"If you have metal-coated ice grains in noctilucent clouds, the radar reflectivity can become enormous" he says. "This reflectivity is not the sum of reflections from individual ice grains, which would not produce a very large reflection. Instead, what happens is that ripples in the cloud of metal-coated ice grains reflect in unison and reinforce each other, somewhat like an army marching in step across a bridge causes the bridge to vibrate."

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://pr.caltech.edu/media

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>