Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Sandwich Technique Improves Analysis of Geographical Data

09.04.2013
UC student researcher develops method to combine thermal data from separate satellite systems to create large, detailed maps of regional temperature fluctuation.

Combining parallel data from separate satellites can be like trying to make a peanut butter and jelly sandwich.

For the sandwich, you want rich and sweet flavors, blended into a smooth, creamy texture – and you want it all in one convenient package. That’s similar to how you want the satellite data, and Bo Yang, a University of Cincinnati graduate student in geography, has a formula for crafting a deeply informative and easily utilized satellite sandwich.

He’ll present his research, “Spatiotemporal Cokriging Images Fusion of Multi-Sensor Land Surface Temperature over Thaw Lakes on North Alaska,” at the Association of American Geographers annual meeting to be held April 9-13 in Los Angeles. The interdisciplinary forum is attended by more than 7,000 scientists from around the world and features an array of geography-related presentations, workshops and field trips.

For his master’s thesis, Yang studied thermal data from two different types of polar-orbiting satellite systems. One system frequently records large images of a region on Earth but in little detail. Another system records small images less frequently but in much greater detail. Analyzing two massive sets of parallel data and finding a way to make them overlap can be complicated and time-consuming. Yang is developing a method to simplify the process.

“In an easy-to-understand way, I am trying to derive both very high-definition and high-frequency revisiting imagery from two satellite-carried sensors,” Yang says. “I use the spatial statistics technique known as co-kriging to fuse multi-sensor land surface temperature images.”

Yang uses an algorithm he devised to fill the spatiotemporal gaps between the two data sets. The result is an intricately detailed map covering a large surface area that allows geographers to quickly derive daily – even hourly – surface temperature and emissivity information. These environmental parameters are important to agriculture and water resource management and can be used to detect the onset and severity of drought.

Yang used thaw lakes in the Arctic Coastal Plain of Alaska as his study area. These lakes are a critical component to Arctic ecology and one that is considered vulnerable to the effects of climate warming. Yang’s work is connected to a larger project under way in the region, the Circumarctic Lakes Observation Network. The National Science Foundation-funded effort aims to gather long-term, spatially extensive data to evaluate the effect of climate change on the region. UC faculty involved in the project include professors Kenneth Hinkel, Richard Beck, Wendy Eisner, Changjoo Kim, Hongxing Liu and Amy Townsend-Small, all of the McMicken College of Arts & Sciences.

Additional contributors to Yang’s research paper were UC professors Hongxing Liu and Emily Kang, and UC doctoral student Qiusheng Wu.

Funding for Yang’s research was provided by the National Science Foundation and NASA.

In 2012, UC was named among the nation’s top "green" schools by The Princeton Review due to its strong commitment to sustainability in academic offerings, campus infrastructure, activities and career preparation. It was the third year in a row that UC earned a spot on the prestigious list.

Tom Robinette | EurekAlert!
Further information:
http://www.uc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>