Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

20.01.2012
Atmospheric methane (CH4), one of the main greenhouse gases, has increased dramatically worldwide since the pre-industrial era. However, much work is needed to build on intermittent and scattered observations since the 1960s and systematic study since the 1980s.

Since 1983, the World Meteorological Organization (WMO) has coordinated global in-situ measurement of methane. Quantification of methane emissions still has large uncertainties, mainly because of undersampling over most regions of the globe by surface observation networks. In particular, spatiotemporal variations of mid-upper tropospheric methane in China are not well understood, because of limited in-situ measurements.

Dr. ZHANG Xingying and his group at the National Satellite Meteorological Center of the China Meteorological Administration tackled this problem using satellite observations. Using Atmospheric Infrared Sounder (AIRS) methane data from 2003 to 2008, they revealed spatiotemporal variations of mid-upper tropospheric methane in China.

Their study shows that in the mid troposphere, a center of low CH4 concentration is located over western China, attributable to minimal industrial and agricultural activity. The lowest CH4 mixing ratio in the upper troposphere is over southern China, related to atmospheric transport from the ocean.

A seasonal cycle of methane has been discovered. One peak in summer and the other in winter over eastern, northeastern and northwestern China. Only one peak (in summer) occurs over southern and western China.

Before 2007, CH4 mixing ratio was nearly stable. The average mixing ratio during the last 6 years over major northern hemispheric countries is similar. However, there has been a significant increase in tropospheric CH4 concentrations after 2007 in most northern hemispheric areas, with slightly larger increases over China.

Dr. ZHANG Xingying has stated that the trend of CH4 based on satellite observation is still somewhat uncertain, because of the short, 6-year dataset. More satellite data of higher quality are needed for further trend analysis.

To understand the profile of methane in China and provide data for validation of satellite products, Fourier Transform Infrared Spectroscopy (FTIR) measurements were made at a ground-based hyperspectral remote sensing laboratory at the National Satellite Meteorological Center. A Bruker FTIR instrument (IFS 120 M, made in Ettlingen, Germany) with 0.008 cm-1 spectral resolution, was used for observations. Several years of data have been collected.

Implementation and promotion of this work will publicize methane spatiotemporal variations and their potential sources. In so doing, informed efforts may be mounted to reduce methane emission and resulting global climate change.

The National Satellite Meteorological Center manages satellite climate products in China. Two payloads for greenhouse gas monitoring are in development for the next satellite. One of the payloads is similar to AIRS for mid-upper tropospheric greenhouse gases. The other is for low tropospheric greenhouse gases, and uses a near-infrared (NIR) spectrometer. Meanwhile, more in-situ measurements have been carried out in China for more detailed investigation of greenhouse gases.

Dr. XIONG Xiaozhen, an expert from NOAA, is in charge of AIRS methane product retrieval. He believes that this study is the first to use satellite data for analyzing mid-upper tropospheric methane over China, and represents important step in the study of climate change.

See the article: Xingying Zhang, Wenguang Bai, Peng Zhang, 2011, Study on three-dimensional structure of tropospheric methane over China based on satellite observations, Chinese Science BulletinC56(31): 3321-3327

Zhang Xingying | EurekAlert!
Further information:
http://www.cma.gov.cn

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>