Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

20.01.2012
Atmospheric methane (CH4), one of the main greenhouse gases, has increased dramatically worldwide since the pre-industrial era. However, much work is needed to build on intermittent and scattered observations since the 1960s and systematic study since the 1980s.

Since 1983, the World Meteorological Organization (WMO) has coordinated global in-situ measurement of methane. Quantification of methane emissions still has large uncertainties, mainly because of undersampling over most regions of the globe by surface observation networks. In particular, spatiotemporal variations of mid-upper tropospheric methane in China are not well understood, because of limited in-situ measurements.

Dr. ZHANG Xingying and his group at the National Satellite Meteorological Center of the China Meteorological Administration tackled this problem using satellite observations. Using Atmospheric Infrared Sounder (AIRS) methane data from 2003 to 2008, they revealed spatiotemporal variations of mid-upper tropospheric methane in China.

Their study shows that in the mid troposphere, a center of low CH4 concentration is located over western China, attributable to minimal industrial and agricultural activity. The lowest CH4 mixing ratio in the upper troposphere is over southern China, related to atmospheric transport from the ocean.

A seasonal cycle of methane has been discovered. One peak in summer and the other in winter over eastern, northeastern and northwestern China. Only one peak (in summer) occurs over southern and western China.

Before 2007, CH4 mixing ratio was nearly stable. The average mixing ratio during the last 6 years over major northern hemispheric countries is similar. However, there has been a significant increase in tropospheric CH4 concentrations after 2007 in most northern hemispheric areas, with slightly larger increases over China.

Dr. ZHANG Xingying has stated that the trend of CH4 based on satellite observation is still somewhat uncertain, because of the short, 6-year dataset. More satellite data of higher quality are needed for further trend analysis.

To understand the profile of methane in China and provide data for validation of satellite products, Fourier Transform Infrared Spectroscopy (FTIR) measurements were made at a ground-based hyperspectral remote sensing laboratory at the National Satellite Meteorological Center. A Bruker FTIR instrument (IFS 120 M, made in Ettlingen, Germany) with 0.008 cm-1 spectral resolution, was used for observations. Several years of data have been collected.

Implementation and promotion of this work will publicize methane spatiotemporal variations and their potential sources. In so doing, informed efforts may be mounted to reduce methane emission and resulting global climate change.

The National Satellite Meteorological Center manages satellite climate products in China. Two payloads for greenhouse gas monitoring are in development for the next satellite. One of the payloads is similar to AIRS for mid-upper tropospheric greenhouse gases. The other is for low tropospheric greenhouse gases, and uses a near-infrared (NIR) spectrometer. Meanwhile, more in-situ measurements have been carried out in China for more detailed investigation of greenhouse gases.

Dr. XIONG Xiaozhen, an expert from NOAA, is in charge of AIRS methane product retrieval. He believes that this study is the first to use satellite data for analyzing mid-upper tropospheric methane over China, and represents important step in the study of climate change.

See the article: Xingying Zhang, Wenguang Bai, Peng Zhang, 2011, Study on three-dimensional structure of tropospheric methane over China based on satellite observations, Chinese Science BulletinC56(31): 3321-3327

Zhang Xingying | EurekAlert!
Further information:
http://www.cma.gov.cn

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>