Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Images Show Breakup of Two of Greenland's Largest Glaciers

25.08.2008
Researchers monitoring daily satellite images here of Greenland’s glaciers have discovered break-ups at two of the largest glaciers in the last month.

They expect that part of the Northern hemisphere’s longest floating glacier will continue to disintegrate within the next year.

A massive 11-square-mile (29-square-kilometer) piece of the Petermann Glacier in northern Greenland broke away between July 10th and by July 24th. The loss to that glacier is equal to half the size of Manhattan Island. The last major ice loss to Petermann occurred when the glacier lost 33 square miles (86 square kilometers) of floating ice between 2000 and 2001.

Petermann has a floating section of ice 10 miles (16 kilometers) wide and 50 miles (80.4 kilometers) long which covers 500 square miles (1,295 square kilometers).

What worries Jason Box, an associate professor of geography at Ohio State, and his colleagues, graduate students Russell Benson and David Decker, even more about the latest images is what appears to be a massive crack further back from the margin of the Petermann Glacier.

That crack may signal an imminent and much larger breakup.

“If the Petermann glacier breaks up back to the upstream rift, the loss would be as much as 60 square miles (160 square kilometers),” Box said, representing a loss of one-third of the massive ice field.

Meanwhile, the margin of the massive Jakobshavn glacier has retreated inland further than it has at any time in the past 150 years it has been observed. Researchers believe that the glacier has not retreated to where it is now in at least the last 4,000 to 6,000 years.

The Northern branch of the Jakobshavn broke up in the past several weeks and the glacier has lost at least three square miles (10 square kilometers) since the end of the last melt season.

The Jakobshavn Glacier dominates the approximately 130 glaciers flowing out of Greenland’s inland into the sea. It alone is responsible for producing at least one-tenth of the icebergs calving off into the sea from the entire island of Greenland, making it the island’s most productive glacier.

Between 2001 and 2005, a massive breakup of the Jakobshavn glacier erased 36 square miles (94 square kilometers) from the ice field and raised the awareness of worldwide of glacial response to global climate change.

The researchers are using images updated daily from National Aeronautics and Space Administration satellites and from time-lapse photography from cameras monitoring the margin of these and other Greenland glaciers. Additional support for this project came from NASA.

Further details and image products can be found at: http://bprc.osu.edu/MODIS/

Contact: Jason Box, (614) 247- 6899; box.11@osu.edu.

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Glacier Greenland Northern hemisphere Petermann Glacier ice field iceberg

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>