Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data shows U.S. methane ‘hot spot’ bigger than expected

10.10.2014

One small “hot spot” in the U.S. Southwest is responsible for producing the largest concentration of the greenhouse gas methane seen over the United States – more than triple the standard ground-based estimate — according to a new study of satellite data.

Methane is very efficient at trapping heat in the atmosphere and, like carbon dioxide, it contributes to global warming. The hot spot, near the Four Corners intersection of Arizona, Colorado, New Mexico and Utah, covers only about 6,500 square kilometers (2,500 square miles), or half the size of Connecticut.


This map shows anomalous U.S. methane emissions (or how much the emissions differ from average background concentrations) for 2003 to 2009, as measured by the European Space Agency’s SCIAMACHY instrument. Purple and dark blue areas are below average. Pale blue and green areas are close to normal or slightly elevated. Yellows and red indicate higher-than-normal anomalies, with more intense colors showing higher concentrations. The Four Corners area – the area where Arizona, Colorado, New Mexico and Utah meet — is the only red spot on the map.

Credit:NASA/JPL-Caltech/University of Michigan

In each of the seven years studied from 2003-2009, the area released about 0.59 million metric tons (0.65 million U.S. tons) of methane into the atmosphere. This is almost 3.5 times the estimate for the same area in the European Union’s widely used Emissions Database for Global Atmospheric Research.

In the study published online today in Geophysical Research Letters, a journal of the American Geophysical Union, researchers used observations made by the European Space Agency’s Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument.

SCIAMACHY measured greenhouse gases from 2002 to 2012. The atmospheric hot spot persisted throughout the study period.

A ground station in the Total Carbon Column Observing Network, operated by the Department of Energy’s Los Alamos National Laboratory, provided independent validation of the measurement.

To calculate the emissions rate that would be required to produce the observed concentration of methane in the air, the authors performed high-resolution regional simulations using a chemical transport model, which simulates how weather moves and changes airborne chemical compounds.

Research scientist Christian Frankenberg of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, first noticed the Four Corners signal years ago in SCIAMACHY data.

“We didn’t focus on it because we weren’t sure if it was a true signal or an instrument error,” Frankenberg said.

The study’s lead author, Eric Kort of the University of Michigan, Ann Arbor, noted the study period predates the widespread use of hydraulic fracturing, known as fracking, near the hot spot. This indicates the methane emissions should not be attributed to fracking but instead to leaks in natural gas production and processing equipment in New Mexico’s San Juan Basin, which is the most active coalbed methane production area in the country.

Natural gas is 95-98 percent methane. Methane is colorless and odorless, making leaks hard to detect without scientific instruments.

“The results are indicative that emissions from established fossil fuel harvesting techniques are greater than inventoried,” Kort said. “There’s been so much attention on high-volume hydraulic fracturing, but we need to consider the industry as a whole.”

Coalbed methane is gas that lines pores and cracks within coal. In underground coal mines, it is a deadly hazard that causes fatal explosions almost every year as it seeps out of the rock. After the U.S. energy crisis of the 1970s, techniques were invented to extract the methane from the coal and use it for fuel. By 2012, coalbed methane supplied about 8 percent of all natural gas in the United States.

Frankenberg noted that the study demonstrates the unique role space-based measurements can play in monitoring greenhouse gases.

“Satellite data cannot be as accurate as ground-based estimates, but from space, there are no hiding places,” Frankenberg said.

In March 2014 the Obama Administration announced a strategy to reduce methane emissions under its Climate Action Plan. The strategy includes improving the measurement and monitoring of methane emissions and assessing current methane emissions data.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA’s Earth science activities in 2014, visit: http://www.nasa.gov/earthrightnow

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061503/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Four Corners: the largest US methane anomaly viewed from space”

Authors:
Eric A. Kort: Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA;

Christian Frankenberg: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Keeley R. Costigan: Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM, USA;

Rodica Lindenmaier: Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM, USA; and   Atmospheric Chemistry and Global Change Division, now at Pacific Northwest National Laboratory, Richland, WA, USA;

Manvendra K. Dubey: Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM, USA;

Debra Wunch: California Institute of Technology, Pasadena, CA, USA.

Contact information for the authors:
Eric Kort: +1 (734) 763-8414,eakort@umich.edu

Christian Frankenberg: +1 (818) 354-1087, Christian.Frankenberg@jpl.nasa.gov

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

NASA Headquarters Contact:
Steve Cole
+1 (202) 358-0918
stephen.e.cole@nasa.gov

NASA Jet Propulsion Laboratory Contact:
Alan Buis
+1 (818) 354-0474
alan.buis@jpl.nasa.gov

University of Michigan Contact:
Nicole Casal Moore
+1 (734) 647-7087
ncmoore@umich.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/satellite-data-shows-u-s-methane-hot-spot-bigger-than-expected/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>