Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising CO2 levels at end of Ice Age not tied to Pacific Ocean

04.10.2011
At the end of the last Ice Age, atmospheric carbon dioxide levels rose rapidly as the planet warmed; scientists have long hypothesized that the source was CO2 released from the deep ocean.

But a new study using detailed radiocarbon dating of foraminifera found in a sediment core from the Gorda Ridge off Oregon reveals that the Northeast Pacific was not an important reservoir of carbon during glacial times. The finding may send scientists back to the proverbial drawing board looking for other potential sources of CO2 during glacial periods.

The study, which was supported by the National Science Foundation and the University of Michigan, was published online this week in Nature Geoscience.

“Frankly, we’re kind of baffled by the whole thing,” said Alan Mix, a professor of oceanography at Oregon State University and an author on the study. “The deep North Pacific was such an obvious source for the carbon, but it just doesn’t match up. At least we’ve shown where the carbon wasn’t; now we just have to find out where it was.”

During times of glaciation, global climate was cooler and atmospheric CO2 was lower. Humans didn’t cause that CO2 change, so it implies that the carbon was absorbed by another reservoir. One obvious place to look for the missing carbon is the ocean, where more than 90 percent of the Earth’s readily exchangeable carbon is stored.

The Pacific Ocean is the largest ocean by volume. The deep water mass longest isolated from the atmosphere and most enriched in carbon is found today in the Northeast Pacific, so the researchers focused their efforts there. They hypothesized that the ventilation age in this basin – or the amount of time since deep water was last in contact with the atmosphere – would be older during glacial times, allowing CO2 to accumulate in the abyss.

“We were surprised to find that during the last ice age, the deep Northeast Pacific had a similar ventilation age to today, indicating it was an unlikely place to hide the missing carbon,” said David Lund, a paleoceanographer at the University of Michigan, formerly at Oregon State, and lead author on the Nature Geosciences paper.

“This indicates that the deep Pacific was not an important sink of carbon during glacial times,” Lund added. “Even more intriguing is that we found the ventilation age increased during the deglaciation, at the exact time that atmospheric CO2 levels were rising.”

The researchers reconstructed the ventilation history of the deep North Pacific, examining the sediments at a site about 75 miles off the coast of southwestern Oregon. There the water is more than a mile-and-a-half deep and is known as the oldest water mass in the modern oceans, Mix said. By radiocarbon dating both the planktonic, or surface-dwelling, and benthic (seafloor-dwelling) foraminifera, the scientists can determine whether the isotopic signatures of the foraminifera match “values predicted by the assumption of oceanic control of the atmosphere.”

The organisms that lived on the seafloor have older “apparent” radiocarbon ages than the organisms that lived at the sea surface, Mix said, even though both come from the same sediment sample and are of the same true age. The radiocarbon dating was performed using an advance particle accelerator by the authors’ colleague, John Southon of the University of California at Irvine.

“Different sources of CO2 have different apparent ages, depending on how long they have been isolated from the atmosphere,” Mix said. “We use these dates as kind of a ‘return address label’ rather than to establish precise ages of the events. The bottom line is that the deep North Pacific wasn’t the source of rising CO2 at the end of the last ice age.”

The study is important not just in tracing climatic history, scientists say, but in forecasting how the Earth may respond to future climate change. The Earth “breathes carbon in and out,” Mix said, inhaling carbon into sediment and soils, while exhaling it via volcanism and a slow exchange between the oceans, soils and plant life with the atmosphere.

When everything is in balance, the Earth is said to be in a “steady state.” But on numerous occasions in the past, the carbon balance has shifted out of whack.

“Because the ocean is such a huge repository of carbon, a relatively small change in the oceans can have a major impact,” Mix said. “We know ocean circulation changed during the ice ages and that is why many scientists assumed the deep Pacific Ocean was the source for rising CO2 levels during the last deglaciation.”

Lund said it “is conceivable that we are misunderstanding the radiocarbon signal by assuming it is controlled by ocean mixing.”

“These are volcanically active regions, so the input of carbon from volcanoes, which lacks radiocarbon because of its great age, needs to be looked at,” Lund pointed out. “But it is premature to draw any conclusions.”

The researchers’ next step will be to look for chemical traces of volcanic influence.

Another source of carbon could be from land, though the authors say it would be difficult to account for the magnitude of atmospheric carbon increase and the apparent radiocarbon age of released carbon by pre-industrial terrestrial sources alone.

“If we can better understand how carbon has moved through the Earth’s systems in the past, and how this relates to climate change, we will better predict how the carbon we are now adding to the atmosphere will move in the future,” Mix said.

About the OSU College of Oceanic and Atmospheric Sciences: COAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges.

Alan Mix | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Time To Say Goodbye: The MOSAiC floe’s days are numbered
31.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Alaskan seismometers record the northern lights
30.07.2020 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Share and browse technologies, research and best practices on COVID-19

03.08.2020 | Information Technology

Strong evidence – Essential regulatory gene for the formation of heart valves discovered

03.08.2020 | Life Sciences

Understanding collective behavior in networks better

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>