Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting the history of volcanic forcing during the past 2,000 years

07.07.2014

A year-by-year record of volcanic eruptions from a comprehensive Antarctic ice core array

A team of scientists led by Michael Sigl and Joe McConnell of Nevada's Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

Antarctic Ice Core Sample Sites

Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI's ultra-trace ice core analytical laboratory.

Credit: M. Sigl

Ice Core Analysis

An ice core section is simultaneously analyzed for a variety of elements and chemical species in DRI's ultra-trace ice core laboratory while slowly melting the ice on a heated melter plate

Credit: Joseph McConnell

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

"This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia," said the report's lead author Michael Sigl, a postdoctoral fellow and specialist in DRI's unique ultra-trace ice core analytical laboratory, located on the Institute's campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun's radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

"This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI," said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, "The new record identifies 116 individual volcanic events during the last 2000 years."

"Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD," Sigl added. This new record also builds on DRI's previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan's largest comprehensive research institution), "The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components." Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

"Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition," said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, "Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible."

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.

This research was funded through the U.S. National Science Foundation grants 0538416, 0538427, 0839093, 0632031, and 0739780; the Funding Program for Next Generation World-Leading Researchers (NEXT Program, Grant Number GR098) supported by the Cabinet Office, Government of Japan and the Japan Society for the Promotion of Science; and the Federal Ministry for Education and Research in Germany (BMBF) through the research program 'MiKlip.'

About the Desert Research Institute: DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people's lives throughout Nevada and the world. All DRI news releases are available at http://news.dri.edu/.

Justin Broglio | Eurek Alert!

Further reports about: Antarctica DRI Earth RIKEN eruptions observations sulfate volcanic volcanic emissions

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Foxes in the city: citizen science helps researchers to study urban wildlife

14.12.2018 | Ecology, The Environment and Conservation

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>