Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing the ocean's hidden fertilizer

18.05.2015

Phosphorus is one of the most common substances on Earth.

An essential nutrient for every living organism--humans require approximately 700 milligrams per day--we're rarely concerned about consuming enough because it is in most of the foods we eat.


Tiny marine plankton form colonies in a variety of shapes visible to the naked eye.

Credit: Carly Buchwald, WHOI

Despite its ubiquity and living organisms' dependence on it, we know surprisingly little about how it moves, or cycles, through the ocean environment.

Scientists studying the marine phosphorous cycle have known that phosphorus was absorbed by plants and animals and released back to seawater in the form of phosphate as these plants and animals decay and die.

But a growing body of research hints that microbes in the ocean transform phosphorus in ways that remain a mystery.

Hidden role of ocean's microbes

A new study by a research team from the Woods Hole Oceanographic Institution (WHOI) and Columbia University reveals for the first time a marine phosphorus cycle that is much more complex than previously thought.

The work also highlights the important but previously hidden role that some microbial communities play in using and breaking down forms of this essential element.

A paper reporting the findings is published this week in the journal Science.

"A reason to be excited about this elegant study is in the paper's last sentence: 'the environmental, ecological and evolutionary controls ...remain completely unknown,'" says Don Rice, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research through its Chemical Oceanography Program. "There's still a lot we don't know about the sea."

The work is also supported by an NSF Dimensions of Biodiversity grant.

"This is an exciting new discovery that closes a fundamental knowledge gap in our understanding of the marine phosphorus cycle," says the paper's lead author Ben Van Mooy, a biochemist at WHOI.

Much like phosphorus-based fertilizers boost the growth of plants on land, phosphorus in the ocean promotes the production of microbes and tiny marine plants called phytoplankton, which compose the base of the marine food chain.

Phosphonate mystery

It's been unclear exactly how phytoplankton are using the most abundant forms of phosphorus found in the ocean--phosphates and a strange form of phosphorus called phosphonates.

"Phosphonates have always been a huge mystery," Van Mooy says.

"No one's been able to figure out exactly what they are, and more importantly, if they're made and consumed quickly by microbes, or if they're just lying around in the ocean."

To find out more about phosphonates and how microbes metabolize them, the researchers took samples of seawater at a series of stations during a research cruise from Bermuda to Barbados.

They added phosphate to the samples so they could see the microbes in action.

The research team used ion chromatography onboard ship for water chemistry analyses, which allowed the scientists to observe how quickly microbes reacted to the added phosphate in the seawater.

"The ion chromatograph [IC] separates out the different families of molecules," explains Van Mooy.

"We added radioactive phosphate, then isolated the phosphonate to see if the samples became radioactive, too. It's the radioactive technique that let us see how fast phosphate was transformed to phosphonate."

Enter the microbes

The researchers found that about 5 percent of the phosphate in the shallow water samples was taken up by the microbes and changed to phosphonates.

In deeper water samples, which were taken at depths of 40 and 150 meters (131 feet and 492 feet), about 15 to 20 percent of the phosphates became phosphonates.

"Although evidence of the cycling of phosphonates has been mounting for nearly a decade, these results show for the first time that microbes are producing phosphonates in the ocean, and that it is happening very quickly," says paper co-author Sonya Dyhrman of Columbia University.

"An exciting aspect of this study was the application of the IC method at sea. In near-real-time, we could tell that the phosphate we added was being transformed to phosphonate."

Better understanding of phosphorus cycle

A better understanding of phosphorus cycling in the oceans is important, as it affects the marine food web and, therefore, the ability of the oceans to absorb atmospheric carbon dioxide.

The researchers say that solving the mystery of phosphonates also reinforces the need to identify the full suite of phosphorus biochemicals being produced and metabolized by marine microbes, and what physiological roles they serve for these cells.

"Such work will help us further resolve the complexities of how this critical element is cycled in the ocean," Dyhrman adds.

###

Grants from the Simons Foundation also supported the work.

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Tiny marine plants play major role in phosphorus cycle | EurekAlert!

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>