Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resolving the 'invisible' gold puzzle

02.05.2019

Arsenic aids formation of giant gold deposits

The Carlin-type gold deposits in Nevada, USA, are the origin of five percent of the global production and 75 percent of the US production of gold. In these deposits, gold does not occur in the form of nuggets or veins, but is hidden - together with arsenic - in pyrite, also known as 'fool's gold'.


Natural pyrite, also called 'fool's gold', in its typical cubic crystal shape.

Credit: C. Kusebauch, GFZ

A team of scientists from the Helmholtz Centre Potsdam - German Research Centre for Geosciences GFZ has now shown experimentally, for the first time, that the concentration of gold directly depends on the content of arsenic in the pyrite. The results were published in the journal Science Advances.

In the Earth's crust, the element gold occurs in concentrations of 2.5 parts per billion (ppb). In order to mine it economically, the gold concentration must be thousands of times higher and it must be found in a focused area close to the surface.

In the gold deposits of the Carlin-type, the gold in the rock is not visible to the human eye. Instead, the 'invisible' gold occurs in tiny pyrite rims that grow on older 'fool's gold' grains which originate from sedimentary rocks.

In the laboratory experiments, the researchers around Christof Kusebauch, lead author of the study showed that the element arsenic plays the crucial role in extracting gold from hot solutions probably from magmatic systems, passing through the rock.

The higher the concentration of arsenic, the more frequently gold chemically binds with pyrite. The shape of the older pyrite is also important: the larger the surface area of the mineral, the more gold can accumulate.

Arsenic indicates gold deposits

Similar to the natural ore system, the authors used iron-rich carbonates and sulfur-rich solutions to synthesize their 'fool´s gold' crystals. "Only then we were able to show that the partition coefficient which controls how much gold is incorporated into pyrite depends on the amount of arsenic," says Christof Kusebauch. "The major challenge was to experimentally grow gold and arsenic bearing pyrite crystals that were big enough to analyze."

The new findings may also help to track down new gold deposits. The experiments show that if hot solutions containing gold and arsenic from magmatic sources pass through sedimentary rocks with large amounts of small 'fools gold' grains present, large gold deposits can be formed.

###

Background:

What is gold? Gold is a chemical element of the copper group with the element symbol Au (from Latin: Aurum). In contrast to most other metals in nature, gold is mostly found in the pure form, meaning in the form of 'nuggets' composed only of one chemical substance.

In contrast, in the Carlin-type gold deposits, gold must be released from ore by chemical extraction. Here, the gold is bound to the ore mineral pyrite and has whole rock concentrations between one and tens of grams per ton of rock material (1000 to 10.000 ppb). This type of gold deposit is formed in carbonate-rich sediments. The deposits in the US formed 42 to 30 million years ago at temperatures of 150 to 250 degree Celsius and at depths of over 2000 meters, before they reached the Earth's surface through processes of plate tectonics.

How is gold formed? On the Earth's surface accessible to mankind, gold has been transported from the Earth's interior to the surface by volcanic and plate tectonic processes; a small part stems from meteorite impacts. Natural processes cannot produce new gold on Earth. The heavy chemical elements in the universe, such as lead, iron, and gold, are created by the collision of neutron stars. Gold is very rare, not only on Earth but throughout the universe.

Project funding:

Helmholtz-Recruitment-Initiative to Prof. Sarah Gleeson

Original study: Kusebauch, C., Gleeson, S.A., Oelze, M., 2019. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Science Advances. DOI: 10.1126/sciadv.aav5891 https://doi.org/10.1126/sciadv.aav5891

Media Contact

Philipp Hummel
philipp.hummel@gfz-potsdam.de
49-331-288-1049

 @GFZ_Potsdam

http://www.gfz-potsdam.de 

Philipp Hummel | EurekAlert!
Further information:
http://dx.doi.org/10.1126/sciadv.aav5891

More articles from Earth Sciences:

nachricht New sensor could shake up earthquake response efforts
11.07.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht NASA satellites find biggest seaweed bloom in the world
09.07.2019 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>