Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make improbable discovery

17.07.2017

Researchers make improbable discovery of deep-sea coral reefs in 'hostile' Pacific Ocean depths

Scientists had long believed that the waters of the Central and Northeast Pacific Ocean were inhospitable to certain species of deep-sea corals, but a marine biologist's discovery of an odd chain of reefs suggests there are mysteries about the development and durability of coral colonies yet to be uncovered.


Scientists ask how it's possible that certain coral reefs are thriving in this location.

Credit: Amy Baco-Taylor

Scientist Amy Baco-Taylor of Florida State University (FSU), in collaboration with researchers from Texas A&M University, found the reefs during an autonomous underwater vehicle survey of the seamounts of the Northwestern Hawaiian Islands.

In a paper published today in the journal Scientific Reports, Baco-Taylor and her team document the reefs. They also discuss possible explanations for the reefs' appearance in areas considered hostile to large communities of scleractinia -- small, stony corals that settle on the seabed and grow bony skeletons to protect their soft bodies.

"I've been exploring the deep sea around the Hawaiian Archipelago since 1998, and have seen enough to know that the presence of the reefs at these depths was definitely unexpected," Baco-Taylor said.

Some ocean areas, such as the North Atlantic and South Pacific, are particularly fertile habitats for deep-sea scleractinian reefs, but a combination of factors led scientists to believe that finding these coral colonies was exceedingly unlikely in the deep waters of the North Pacific.

The North Pacific's low level of aragonite, an essential mineral in the formation of scleractinian skeletal structures, makes it difficult for the coral polyps to develop their rugged skeletons.

In addition, North Pacific carbonate dissolution rates, a measure of the pace at which carbonate substances such as coral skeletons dissolve, exceed those of the more amenable North Atlantic by a factor of two.

In other words, said Baco-Taylor, the reefs simply should not exist in the North Pacific.

"Even if the corals could overcome low aragonite saturation and build up robust skeletons, there are areas on the reefs that are just exposed skeleton, and those should be dissolving," Baco-Taylor said. "We shouldn't be finding an accumulation of reefs."

The researchers suggest potential reasons for the improbable success of these hardy reefs. Among them, higher concentrations of chlorophyll in the areas of reef growth suggest that an abundance of food may provide the excess energy needed for calcification in waters with low aragonite saturation.

But that doesn't tell the whole story.

It doesn't explain "the unusual depths of the reefs, or why, moving to the northwest along the seamounts, they get shallower," Baco-Taylor said. "There's still a mystery as to why these reefs are here."

The unexpected discovery of the reefs has prompted some scientists to reconsider the effects of ocean acidification on vulnerable coral colonies. At a time when stories about the wholesale demise of reefs around the world are sparking alarm, these findings may offer a glimmer of hope.

"These results show that the effects of ocean acidification on deep-water corals may not be as severe as predicted," said David Garrison, a program director in the National Science Foundation's Division of Ocean Sciences, which funded the research. "What accounts for the resilience of these corals on seamounts in the Pacific, however, remains to be determined."

The reefs occur primarily outside the protected Papahanamoukuakea Marine National Monument, which means they exist in areas where destructive trawling is permitted and active.

Researcher Nicole Morgan of FSU, also a co-author of the paper, said that locating the survivalist reefs is crucial because it gives scientists a chance to preserve them.

"We want to know where these habitats are so that we can protect them," Morgan said. "We don't want important fisheries to collapse, which often happens when reefs disappear."

The discovery of the puzzling reefs shows that there are still gaps in scientists' understanding of the deep sea. The success of hypothesis-driven exploration, like the kind that produced these findings, demonstrates the importance of continuing to strike out into the unknown, said Baco-Taylor.

"These results highlight the importance of doing research in unexplored areas, or 'exploration science,' as we like to call it," said Brendan Roark of Texas A&M University, project co-principal investigator with Baco-Taylor.

If there are additional similar reefs sprinkled across the Northwestern Hawaiian seamounts, Baco-Taylor wants to find them. Further study of these reefs could reveal important information about how they might endure in a time of climbing carbon dioxide levels and increasing ocean acidification.

"If more of these reefs are there, that would run counter to what ocean acidification and carbonate chemistry dictate," Baco-Taylor said.

"It leaves us with some big questions: Is there something we're not understanding? How is the existence of these reefs possible?"

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: coral colonies corals deep sea ocean acidification seamounts skeletons

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>