Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find microbial heat islands in the desert

20.01.2016

Deserts are often thought of as barren places that are left exposed to the extremes of heat and cold and where not much is afoot. But that view is being altered as new research keeps revealing the intricate ecological dynamics of deserts as they change responding to the elements.

New research from Arizona State University now reveals how microbes can significantly warm the desert surface by darkening it, much in the same way that dark clothes will make you feel warmer in sunlight. These desert-darkening organisms make a living basking in the sun and form a mantle that covers the landscape.


The desert outside Chandler, Ariz., shows a darkening of the biocrust (left) over its surface.

Credit: Ferran Garcia-Pichel, Arizona State University

Such mantles, called biological soil crusts, or biocrusts, provide important ecosystem services, like fighting erosion and preventing dust storms, or fertilizing the ground with carbon and nitrogen.

The new ASU research shows how the biocrust microorganisms, in an effort to protect themselves from harmful ultraviolet rays in the strong desert sun, produce and lay down so much sunscreen as to noticeably darken the soil, changing the reflectivity of the desert surface as they spread across the land.

The research is outlined in the article "Bacteria increase arid-land soil surface temperature through the production of sunscreens," published in the Jan. 20, 2016 issue of Nature Communications. It was written by Estelle Couradeau, a Marie Curie postdoctoral fellow at Arizona State University, and Ferran Garcia-Pichel, an ASU professor and Dean of Natural Sciences in the College of Liberal Arts and Sciences.

It is part of a long-term institutional collaboration with Lawrence Berkeley National Laboratory, whose fellow scientists Trent Northen, Ulas Karaoz, Hsiaon Chiem Lin, Ulisses Nunes da Rocha and Eoin Brodie, are co-authors of the paper.

"We have found that the presence of sunscreen-bearing crusts can actually raise local surface temperature by as much as 10 degrees C (18 degrees F). Because globally they cover some 20 percent of Earth's continents, biocrusts, their microbes and sunscreens must be important players in global heat budgets," said Couradeau.

"We estimate that there must be some 15 million metric tons of this one microbial sunscreen compound, called scytonemin, warming desert soils worldwide," added Couradeau, the lead author of the paper.

Couradeau spent the last three years studying biocrusts in the laboratory of Garcia-Pichel.

"An increase of 18 degrees F is not without consequence, and we can show that the darkening of the crust brings about important modifications in the soil microbiome, the community of microorganisms in the soil, allowing warm-loving types to do better," Garcia-Pichel added.

"This warming effect is likely to speed up soil chemical and biological reactions, and can make a big difference between being frozen or not when it gets cold," he explained. "On the other hand, it may put local organisms at increased risk when it is already quite hot."

Couradeau and Garcia-Pichel said that while biocrusts have been overlooked in the past they are now getting much closer scrutiny from scientists.

"Biocrusts, while cryptic, deserve more consideration from us," concluded Couradeau. "We need to include them in our climate models and speak about them in the classroom."

Media Contact

Skip Derra
skip.derra@asu.edu
480-965-4823

 @ASU

http://asunews.asu.edu/ 

Skip Derra | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>