Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on Chikyu Report Successful Riser-Drilling

03.08.2009
For the first time in the history of scientific ocean drilling, researchers aboard the riser-equipped drilling vessel CHIKYU successfully drilled down to a depth of 1,603.7 meters beneath the sea floor into an earthquake-generating zone off the coast of Japan.

Kumano Basin off Kii Peninsula, approximately 58 km southeast of Japan— Despite harsh atmospheric and ocean conditions, and complex geological characteristics of its drill site, the deep-sea drilling vessel CHIKYU, for the first time in the history of scientific ocean drilling, conducted riser-drilling operations to successfully drill down to a depth of 1,603.7 meters beneath the sea floor (at water depth of 2,054 meters).

Engaged in IODP Expedition 319, the CHIKYU is drilling deep into the upper portion of the great Nankai Trough earthquake zone to gain insights into geological formations and stress-strain characteristics. The CHIKYU is operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) a partner in the Integrated Ocean Drilling Program (IODP). The Kumano Basin drilling and sampling operations began on May 12; the science party is expected to complete the first drill site on or about August 1.

Riser-drilling technology was employed from about 700 meters below the sea floor to the bottom of the hole. Riser-drilling involves the circulation of drilling fluid that helps maintain pressure balance within the borehole. Cuttings were recovered from the circulated drilling fluid and analyzed to gain a better overall picture of downhole changes in lithology and age. Core samples also were collected between depths of 1,510 and 1,593.3 meters below the seafloor.

Co-Chief Scientist Lisa McNeill of University of Southampton, UK, states, “This state-of-the-art technology enables scientists to access an unknown area. It will provide a lot of important information about what has happened in the seismogenic zone in the past and its present condition.” She adds, “I’m very pleased to be a member of the science party conducting the first riser-drilling operation in the Nankai Trough.”

Following drilling operations that included “measurement -while-drilling” to obtain real-time geophysical characteristics, wireline logging instruments were lowered into the borehole to measure formation temperature, resistivity, porosity, density, gamma ray, and borehole diameter. The riser-drilling technology enabled dynamic formation testing using the logging instrumentation for the first time during IODP scientific ocean drilling operations; this instrumentation is designed to measure stress, water pressure, and rock permeability.

Co-Chief Scientist Timothy Byrne of University of Connecticut emphasizes the importance of the Nankai Trough experiment results. "These two parameters, stress magnitude and pore pressure,” he says, “are both important to understanding earthquake processes.”

In addition, vertical seismic profiling was conducted from July 24–25 to obtain accurate details of the geological structure of the plate boundary system. The activity involved an array of 16 seismographs vertically lowered into the borehole and eight ocean-bottom seismographs placed on the sea floor. An air-gun array on the JAMSTEC research vessel KAIREI generated elastic waves, which traveled through the formation to be recorded on the borehole and sea floor instruments.

“The seismic sensor array was installed in this hole below the thick sediment layer,” says Co-Chief Scientist Eiichiro Araki of JAMSTEC. “It acts like a telescope exploring the structure of faults in detail, which are responsible for causing large earthquakes such as the one that occurred here in 1944."

Operations at this drill site are expected to conclude after casing the borehole to the bottom of the hole and capping it with a corrosion cap for future installation of a long-term borehole monitoring system (LTBMS). After completion of this task, the CHIKYU will move to its next drill site, where riserless drilling will be employed to penetrate the shallow portion of the megasplay fault branching from the seismogenic zone. Logging-while-drilling (LWD) will be conducted to measure rock properties, geological formation, and geophysical characteristics of the area. As a preliminary operation for LTBMS scheduled in the future, observatory instruments will be installed inside the hole to measure borehole temperature and pressure over the next few years.

Further analyses by scientists are expected to generate significant scientific knowledge of past earthquake activities and development processes of the Nankai Trough accretionary prism, as well as the mechanism of occurrence of large earthquakes and tsunamis.

Co-Chief Scientist Demian Saffer of The Pennsylvania State University notes, “With the efforts of the drillers and operations groups, we succeeded in conducting several very challenging experiments, many of which can only be achieved by riser drilling. The results provide important information about conditions within the rocks above zones where earthquakes occur. Ultimately, we plan to install long-term observatory systems in these boreholes that will allow us to continuously monitor the geologic formation during the earthquake cycle.”

Daily reports, photos and video from the CHIKYU are available online at:
http://www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/special.html.
The above schedule is subject to change depending on the progress of drilling operation and weather

Wataru Nakamura | Newswise Science News
Further information:
http://www.jamstec.go.jp
http://www.iodp.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>