Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Methane Hydrate in Gulf Using New Search Method

03.02.2010
A Baylor University researcher has used a new search method that he adapted for use on the seafloor to find a potentially massive source of hydrocarbon energy called methane hydrate, a frozen form of natural gas, in a portion of the Gulf of Mexico.

Dr. John Dunbar, associate professor of geology at Baylor, and his team used an electrical resistivity method to acquire geophysical data at the site, located roughly 50 miles off the Louisiana coast. The Baylor researchers were able to provide a detailed map of where the methane hydrate is located and how deep it extends underneath the seafloor.

Located in an area called the Mississippi Canyon, the site is about 3,000-feet-wide, 3,000-feet under water, and has both active and dormant gas vents. Scientists have been researching the site since 2001, but have not been able to ascertain where the hydrate is located nor how much is there until now.

“The conventional search methods have been fairly effective in certain situations, but the resistivity method is a totally different approach,” Dunbar said. “The benefit to the resistivity method is it shows the near-bottom in greater detail, and that is where the methane hydrate is located in this case. This research shows the resistivity method works and is effective.”

Dunbar and his research team injected a direct electrical current into the seafloor to measure the resistivity of the sediment beneath the sea floor. The measurement of resistivity – the ability of a material to resist conduction of electricity – showed the researchers where the methane hydrate is located. To do this, Dunbar and his team dragged a “sled” – a device with a nearly one-kilometer-long towed array – back and forth over the site, injecting the electrical current. Sediment containing methane hydrate within its pores showed higher resistivity, compared to sediment containing salt water. While the measurement of resistivity has been used for some time, the method has seldom been used at deep depths.

The new method showed researchers that the methane hydrate was located only in limited spots, usually occurring along faults under the sea floor. Dunbar said the method also showed the methane hydrate is not as abundant as previously thought at the site.

The U.S. Department of Energy has awarded Dunbar more than $115,000 to continue researching the site. Dunbar and his team will reconfigure the towed array and shorten the length of it to about 1,500 feet. They also will cluster sensors around certain areas on the array, which will give researchers a clearer picture of how deep the methane hydrate extends and will allow them to create a three-dimensional picture of the underwater site.

An ice-like solid, methane hydrate is found beneath the seafloor in many locations across the globe, usually at depths greater than 3,000 feet. The most common place to find gas hydrate mounds in the Gulf of Mexico are along the intersections of faults with the seafloor. According to the U.S Geological Survey, the nation’s methane hydrate deposits are estimated to hold a vast 200 trillion cubic feet of natural gas. If just one percent of those deposits are commercially produced, it would more than double the country’s natural gas reserves.

For more information, contact Matt Pene, assistant director of media communications at Baylor, at (254) 710-4656.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>