Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Estimates Future Sea Level Rise by Looking to the Past

02.05.2011
Leads Team to Australia to Search for 3 Million-Year-Old Shoreline

BU College of Arts & Sciences Paleoclimatologist Maureen Raymo and colleagues published findings that should help scientists better estimate the level of sea level rise during a period of high atmospheric carbon dioxide levels 3 million years ago. That geologic era, known as the mid-Pliocene climate optimum, saw much higher global temperatures that may have been caused by elevated levels of carbon dioxide—an analogy for the type of climate we are causing through human addition of greenhouse gases to the atmosphere.

During the mid-Pliocene climate optimum, sea levels were anywhere between 15 and 100 feet higher than at present because water that is now locked up in glaciers as ice circulated freely through the oceans. Raymo and her colleagues published their findings in the current edition of Nature Geoscience in a paper titled “Departures from eustasy in Pliocene sea-level records.” The paper provides an improved model for interpreting geologic evidence of ancient shorelines. The URL link to the press release about the paper is here: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1118.html.

The team’s findings add to the scientific body of knowledge about mid-Pliocene sea levels. By understanding the extent of sea level rise 3 million years ago, scientists like Raymo hope to more accurately predict just how high the seas will rise in the coming decades and centuries due to global warming.

Through their project, titled PLIOMAX (Pliocene maximum sea level project), Raymo and her colleagues have shared data with a larger community of geoscientists involved in studying similar so-called “high stand deposits” around the world. The accumulated data should shed light on the extent to which we can expect the Greenland Ice Sheet, West Antarctic Ice Sheet, and East Antarctic Ice Sheet to melt due to increasing levels of atmospheric carbon dioxide.

Raymo is a Research Professor in the Department of Earth Science in BU’s College of Arts & Sciences. She is also a member of BU’s Climate and Earth History Research Group. She received her Ph.D. from Columbia University in 1989 and has recently accepted a position to return to Columbia University.

Raymo studies the causes of climate change over Earth’s history, in particular the role played by the global carbon cycle and Earth’s orbital variations around the Sun. Most of her work has been based on data collected from deep-sea sediment and microfossils recovered using the research vessel JOIDES Resolution. She has used the stable isotopes of oxygen and carbon to study past ocean circulation and ice volume history and is well known for her proposal that the cooling of global climate over the last 40 million years was caused primarily by enhanced chemical weathering and consumption of atmospheric CO2 in the mountainous regions of the world, especially in the Himalayas.

About Boston University—Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU contains 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Patrick Farrell | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>