Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017

Study finds marsh pond expansion a significant factor in loss of Mississippi Delta land

Wind-driven expansion of marsh ponds on the Mississippi River Delta is a significant factor in the loss of crucial land in the Delta region, according to research published by scientists at Indiana University and North Carolina State University.


This is a satellite image of coast at Mississippi Delta.

Credit: Indiana University

The study found that 17 percent of land loss in the area resulted from pond expansion, much of it caused by waves that eroded away the edges of the pond.

The findings add to scientists' understanding of the processes that shape the Delta and present new challenges for scientists and engineers seeking ways to protect sensitive coastlines.

"The Mississippi Delta is undergoing collapse as land disappears from the coast and marshes," said study co-author Douglas Edmonds, assistant professor and the Malcolm and Sylvia Boyce Chair in the Department of Earth and Atmospheric Sciences at IU Bloomington. "Yet we know surprisingly little about what processes are driving land loss."

River deltas are ecologically important and highly productive, and they are home to about 5 percent of the world's population. Under naturally occurring processes, coastal land is created in deltas when river sediment is deposited. But sea-level rise and human engineering of river channels have starved the Mississippi Delta of sediment, creating widespread land loss. Any hope of reversing the trend, Edmonds said, requires a clear understanding of the processes at work.

To conduct the study, the researchers analyzed satellite images taken from 1982 to 2016 across the Delta.

"In total, we looked at 10,000 images and classified approximately 1.29 billion pixels into land or water," said Samapriya Roy, a doctoral student at IU in geography and another co-author on the paper. "To do this we took advantage of the supercomputing resources at Indiana University."

Much of the pond expansion the researchers observed was in a southwesterly direction, driven by prevailing winds from the northeast. Expansion was significantly greater in ponds larger than 300 meters in diameter, where larger waves were more likely to erode the edges.

"Our analysis shows that ponds across the deltaic plain are moving and expanding in the same direction as the wind," said Alejandra Ortiz, the study's lead author and an assistant professor of civil, construction and environmental engineering at North Carolina State University. "That such evidence emerged over this expansive study area was surprising, because we thought sea-level rise would be the dominant control on pond expansion. We were also surprised by how important pond expansion is to total land loss on the Mississippi River Delta."

The study points to the importance of river-borne sediment. Because scientists thought sea-level rise and storm surges were dominant threats to coastlines, coastal protection has largely focused on building walls, embankments and other structures to combat rising seas and adding land to replace what's lost or left underwater. But the expansion of ponds would take place even if sea levels weren't rising.

"Most current restoration strategies call for diverting sediment to the coastline where rising sea level is a threat," Edmonds said. "Our work points out that sediment should also be diverted to marsh ponds to halt expansion."

On the Mississippi, dams and flood-control barriers have changed the flow of the river and reduced the amount of sediment deposited at the Delta to replace land that is lost to flooding and erosion. But it's also possible to build diversions that direct river sediment to where it is needed.

"Restoring these pathways of sediment movement is key to reversing the trend of land loss," Edmonds said. "Sediment is a valuable resource in the Mississippi Delta, but unfortunately it is in short supply."

###

The study was published in Geophysical Research Letters and funded by the National Science Foundation.

Media Contact

Steve Hinnefeld
slhinnef@iu.edu
812-856-3488

 @IUScienceNews

http://newsinfo.iu.edu 

Steve Hinnefeld | EurekAlert!

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>