Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project on environmental impacts of deep-sea mining

27.11.2018

Mineral raw materials are in great demand, which is why previously unused deposits are also coming into focus. Economically interesting quantities of nickel, cobalt, copper and other precious metals are contained in manganese nodules that have formed on the seabed over millions of years. An international project funded by the Federal Ministry of Education and Research (BMBF) and involving scientists from Jacobs University Bremen is investigating the environmental effects and risks of a possible mining of these nodules in the deep-sea, 4000 meters below sea level.

The deep-sea is a vast, still little studied area where ecological processes are slow due to low temperatures, darkness and limited food supply. The ecosystem therefore needs centuries to recover from disturbances.


Manganese nodules on the sea floor in the Clarion Clipperton zone.

Photo: ROV KIEL 6000, GEOMAR (CC BY 4.0)


Postdoc Sophie Paul

Photo: private

Many species have not yet been discovered, and some of the processes that take place in the deep-sea and may have far-reaching effects are not yet fully understood. The chemical balance between the seabed and the water column will also be disturbed by technical intervention.

At the beginning of February 2019, the international team will board the German research vessel "Sonne" in Manzanillo, Mexico. The group of scientists from 32 partner institutions from Germany, the Netherlands, Belgium, Portugal, Italy, Norway, France, Great Britain, Poland, and Jamaica is aiming for the Clarion Clipperton Zone, four days away from the Mexican coast. In this area in the Central Pacific, the researchers will observe and study an industrial deep-sea mining experiment by the Belgian company DEME-GSR.

The mining of manganese nodules from the seabed influences the surface sediment and whirls up soft deep-sea sediments, creating a plume that spreads over long distances before returning to the seabed. The scientists will examine these sediment plumes in real time and take samples from the affected area immediately after the intervention. The researchers will spend a total of three months in the region.

Jacobs University's team, including postdoc Sophie Paul, will focus on metal distribution in the sediment and pore water of the sediment. Its composition allows conclusions to be drawn about the nature and extent of the changes and the effects on biogeochemical cycles. Sediment cores will be sampled in the ship's cold room to preserve the temperature conditions from the deep-sea as best as possible and will be analyzed in the laboratory at Jacobs University after the voyage. The oceanographer Prof. Dr. Laurenz Thomsen from Jacobs University and the postdoc Benjamin Gillard are also involved in the project.

On the part of Jacobs University, this research project is headed by Prof. Dr. Andrea Koschinsky, as was the case with the previous project. From 2015 to 2017, European researchers, including the geochemist's working group, analyzed possible environmental aspects that might arise from future industrial mining activities on the deep-sea floor. Sophie Paul was also involved as a PhD student at the time. Apart from the BMBF, "Mining Impact 2", as the project is called, is financed by the national funding agencies of the other participating countries. The BMBF itself is supporting the project with 442,000 euros for Jacobs University.

Further information:
https://miningimpact.geomar.de

About Jacobs University Bremen:
Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs.

This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its more than 1,400 students come from more than 100 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.

For more information: https://www.jacobs-university.de
https://www.facebook.com/jacobs.university
https://www.youtube.com/user/JacobsUni
https://twitter.com/jacobs_bremen
https://www.instagram.com/jacobsuniversity/
https://www.weibo.com/jacobsuniversity

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andrea Koschinsky | Professor of Geosciences
a.koschinsky@jacobs-university.de | Tel: +49 421 200-3567

Thomas Joppig | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Rock debris protects glaciers from climate change more than previously known
05.08.2020 | Northumbria University

nachricht Time To Say Goodbye: The MOSAiC floe’s days are numbered
31.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>