Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project on environmental impacts of deep-sea mining

27.11.2018

Mineral raw materials are in great demand, which is why previously unused deposits are also coming into focus. Economically interesting quantities of nickel, cobalt, copper and other precious metals are contained in manganese nodules that have formed on the seabed over millions of years. An international project funded by the Federal Ministry of Education and Research (BMBF) and involving scientists from Jacobs University Bremen is investigating the environmental effects and risks of a possible mining of these nodules in the deep-sea, 4000 meters below sea level.

The deep-sea is a vast, still little studied area where ecological processes are slow due to low temperatures, darkness and limited food supply. The ecosystem therefore needs centuries to recover from disturbances.


Manganese nodules on the sea floor in the Clarion Clipperton zone.

Photo: ROV KIEL 6000, GEOMAR (CC BY 4.0)


Postdoc Sophie Paul

Photo: private

Many species have not yet been discovered, and some of the processes that take place in the deep-sea and may have far-reaching effects are not yet fully understood. The chemical balance between the seabed and the water column will also be disturbed by technical intervention.

At the beginning of February 2019, the international team will board the German research vessel "Sonne" in Manzanillo, Mexico. The group of scientists from 32 partner institutions from Germany, the Netherlands, Belgium, Portugal, Italy, Norway, France, Great Britain, Poland, and Jamaica is aiming for the Clarion Clipperton Zone, four days away from the Mexican coast. In this area in the Central Pacific, the researchers will observe and study an industrial deep-sea mining experiment by the Belgian company DEME-GSR.

The mining of manganese nodules from the seabed influences the surface sediment and whirls up soft deep-sea sediments, creating a plume that spreads over long distances before returning to the seabed. The scientists will examine these sediment plumes in real time and take samples from the affected area immediately after the intervention. The researchers will spend a total of three months in the region.

Jacobs University's team, including postdoc Sophie Paul, will focus on metal distribution in the sediment and pore water of the sediment. Its composition allows conclusions to be drawn about the nature and extent of the changes and the effects on biogeochemical cycles. Sediment cores will be sampled in the ship's cold room to preserve the temperature conditions from the deep-sea as best as possible and will be analyzed in the laboratory at Jacobs University after the voyage. The oceanographer Prof. Dr. Laurenz Thomsen from Jacobs University and the postdoc Benjamin Gillard are also involved in the project.

On the part of Jacobs University, this research project is headed by Prof. Dr. Andrea Koschinsky, as was the case with the previous project. From 2015 to 2017, European researchers, including the geochemist's working group, analyzed possible environmental aspects that might arise from future industrial mining activities on the deep-sea floor. Sophie Paul was also involved as a PhD student at the time. Apart from the BMBF, "Mining Impact 2", as the project is called, is financed by the national funding agencies of the other participating countries. The BMBF itself is supporting the project with 442,000 euros for Jacobs University.

Further information:
https://miningimpact.geomar.de

About Jacobs University Bremen:
Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs.

This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its more than 1,400 students come from more than 100 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.

For more information: https://www.jacobs-university.de
https://www.facebook.com/jacobs.university
https://www.youtube.com/user/JacobsUni
https://twitter.com/jacobs_bremen
https://www.instagram.com/jacobsuniversity/
https://www.weibo.com/jacobsuniversity

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andrea Koschinsky | Professor of Geosciences
a.koschinsky@jacobs-university.de | Tel: +49 421 200-3567

Thomas Joppig | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Wildfires bring climate’s dark forcings to the stratosphere
27.11.2018 | Max-Planck-Institut für Chemie

nachricht How Unknown Glaciers Contributed to Rising Sea Levels
22.11.2018 | Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

 
Latest News

New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope

27.11.2018 | Medical Engineering

Working together for the industrialization of bipolar batteries with Lithium-ion technology

26.11.2018 | Power and Electrical Engineering

Capturing the frugal beauty of complex natural tessellations

26.11.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>