Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report cites 'liquefaction' as key to much of Japanese earthquake damage

19.04.2011
The massive subduction zone earthquake in Japan caused a significant level of soil “liquefaction” that has surprised researchers with its widespread severity, a new analysis shows.

The findings also raise questions about whether existing building codes and engineering technologies are adequately accounting for this phenomenon in other vulnerable locations, which in the U.S. include Portland, Ore., parts of the Willamette Valley and other areas of Oregon, Washington and California.

A preliminary report about some of the damage in Japan has just been concluded by the Geotechnical Extreme Events Reconnaissance, or GEER advance team, in work supported by the National Science Foundation.

The broad geographic extent of the liquefaction over hundreds of miles was daunting to experienced engineers who are accustomed to seeing disaster sites, including the recent earthquakes in Chile and New Zealand.

“We’ve seen localized examples of soil liquefaction as extreme as this before, but the distance and extent of damage in Japan were unusually severe,” said Scott Ashford, a professor of geotechnical engineering at Oregon State University and a member of this research team.

“Entire structures were tilted and sinking into the sediments, even while they remained intact,” Ashford said. “The shifts in soil destroyed water, sewer and gas pipelines, crippling the utilities and infrastructure these communities need to function. We saw some places that sank as much as four feet.”

Some degree of soil liquefaction is common in almost any major earthquake. It’s a phenomenon in which saturated soils, particularly recent sediments, sand, gravel or fill, can lose much of their strength and flow during an earthquake. This can allow structures to shift or sink and significantly magnify the structural damage produced by the shaking itself.

But most earthquakes are much shorter than the recent event in Japan, Ashford said. The length of the Japanese earthquake, as much as five minutes, may force researchers to reconsider the extent of liquefaction damage possible in situations such as this.

“With such a long-lasting earthquake, we saw how structures that might have been okay after 30 seconds just continued to sink and tilt as the shaking continued for several more minutes,” he said. “And it was clear that younger sediments, and especially areas built on recently filled ground, are much more vulnerable.”

The data provided by analyzing the Japanese earthquake, researchers said, should make it possible to improve the understanding of this soil phenomenon and better prepare for it in the future. Ashford said it was critical for the team to collect the information quickly, before damage was removed in the recovery efforts.

“There’s no doubt that we’ll learn things from what happened in Japan that will help us to mitigate risks in other similar events,” Ashford said. “Future construction in some places may make more use of techniques known to reduce liquefaction, such as better compaction to make soils dense, or use of reinforcing stone columns.”

The massive subduction zone earthquakes capable of this type of shaking, which are the most powerful in the world, don’t happen everywhere, even in other regions such as Southern California that face seismic risks. But an event almost exactly like that is expected in the Pacific Northwest from the Cascadia Subduction Zone, and the new findings make it clear that liquefaction will be a critical issue there.

Many parts of that region, from northern California to British Columbia, have younger soils vulnerable to liquefaction - on the coast, near river deposits or in areas with filled ground. The “young” sediments, in geologic terms, may be those deposited within the past 10,000 years or more. In Oregon, for instance, that describes much of downtown Portland, the Portland International Airport, nearby industrial facilities and other cities and parts of the Willamette Valley.

Anything near a river and old flood plains is a suspect, and the Oregon Department of Transportation has already concluded that 1,100 bridges in the state are at risk from an earthquake on the Cascadia Subduction Zone. Fewer than 15 percent of them have been retrofitted to prevent collapse.

“Buildings that are built on soils vulnerable to liquefaction not only tend to sink or tilt during an earthquake, but slide downhill if there’s any slope, like towards a nearby river,” Ashford said. “This is called lateral spreading. In Portland we might expect this sideways sliding of more than four feet in some cases, more than enough to tear apart buildings and buried pipelines.”

Some damage may be reduced or prevented by different construction techniques or retrofitting, Ashford said. But another reasonable goal is to at least anticipate the damage – to know what will probably be destroyed, make contingency plans for what will be needed to implement repairs, and design ways to help protect and care for residents until services can be restored.

Small armies of utility crews are already at work in Japan on such tasks, Ashford said. There have been estimates of $300 billion in damage.

The recent survey in Japan identified areas as far away as Tokyo Bay that had liquefaction-induced ground failures. The magnitude of settlement and tilt was “larger than previously observed for such light structures,” the researchers wrote in their report.

Impacts and deformation were erratic, often varying significantly from one street to the next. Port facilities along the coast faced major liquefaction damage. Strong Japanese construction standards helped prevent many buildings from collapse – even as they tilted and sank into the ground.

About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

Scott Ashford | EurekAlert!
Further information:
http://www.oregonstate.edu
http://oregonstate.edu/ua/ncs/archives/2011/apr/report-cites-“liquefaction”-key-much-japanese-earthquake-damage

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>