Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Current melting of Greenland's ice mimicks 1920s-1940s event

11.12.2007
Two researchers here spent months scouring through old expedition logs and reports, and reviewing 70-year-old maps and photos before making a surprising discovery:

They found that the effects of the current warming and melting of Greenland 's glaciers that has alarmed the world's climate scientists occurred in the decades following an abrupt warming in the 1920s.

Their evidence reinforces the belief that glaciers and other bodies of ice are exquisitely hyper-sensitive to climate change and bolsters the concern that rising temperatures will speed the demise of that island's ice fields, hastening sea level rise.

The work, reported at this week's annual meeting of the American Geophysical Union in San Francisco , may help to discount critics' notion that the melting of Greenland 's glaciers is merely an isolated, regional event.

They recently recognized from using weather station records from the past century that temperatures in Greenland had warmed in the 1920s at rates equivalent to the recent past. But they hadn't confirmed that the island's glaciers responded to that earlier warming, until now.

“What's novel about this is that we found a wealth of information from low-tech sources that has been overlooked by most researchers,” explained Jason Box, an associate professor of geography at Ohio State University and a researcher with the Byrd Polar Research Center. Many researchers, he says, rely heavily on information from satellites and other modern sources.

Undergraduate student Adam Herrington, co-author on this paper and a student in the School of Earth Sciences, spent weeks in the university's libraries and archives, scouring the faded, dusty books that contained the logs of early scientific expeditions, looking primarily for photos and maps of several of Greenland 's key glaciers.

“I must have paged through more than a hundred such volumes to get the data we needed for this study,” Herrington said.

They concentrated on three large glaciers flowing out from the central ice sheet towards the ocean – the Jakobshavn Isbrae, the Kangerdlugssuaq and the Helheim.

“These three glaciers are huge and collectively, they drain as much as 40 percent of the southern half of the ice sheet. All three have recently increased their speed as the temperature rose,” Box said, adding that the Kangerdlugssuaq, at 3.1 miles (5 kilometers) wide is half-again as wide as New York's Manhattan Island .

Digging through the old data, Herrington found a map from 1932 and an aerial photo from 1933 that documented how, during a warm period, the Kangerdlugssuaq Glacier lost a piece of floating ice that was nearly the size of New York 's Manhattan Island .

“That parallels what we know about recent changes,” Box said. “In 2002 to 2003, that same glacier retreated another 3.1 miles (5 kilometers), and that it tripled its speed between 2000 and 2005.”

The fact that recent changes to Greenland's ice sheet mirror its behavior nearly 70 years ago is increasing researchers' confidence and alarm as to what the future holds. Recent warming around the frozen island actually lags behind the global average warming pattern by about 1-2 degrees C but if it fell into synch with global temperatures in a few years, the massive ice sheet might pass its “threshold of viability” – a tipping point where the loss of ice couldn't be stopped.

“Once you pass that threshold,” Box said, “the current science suggests that it would become an irreversible process. And we simply don't know how fast that might happen, how fast the ice might disappear.”

Greenland 's ice sheet contains at least 10 percent of the world's freshwater AND it has been losing more than 24 cubic miles (100 cubic kilometers) of ice annually for the last five years and 2007 was a record year for glacial melting there.

This work was supported in part by the National Aeronautics and Space Administration, the National Science Foundation and Ohio State.

Jason Box | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Long-distance travels complicate conservation of migratory birds
23.10.2018 | Humboldt-Universität zu Berlin

nachricht Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin
19.10.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>