Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain summits in the Alps becoming increasingly similar

03.12.2007
Alpine summit vegetation will become increasingly homogenized as a result of climate change, say researchers from the University of Bayreuth and the Helmholtz Centre for Environmental Research writing in the international Journal of Vegetation Science.

The biologists assessed data on the composition and species numbers of plants on the summits of seven mountains measuring over 3000 metres in the Bernina range in Switzerland over a period of almost one hundred years. They noticed that as a result of climate change, an upward shift of flora is taking place.

This is increasing the number of species on the mountain summits studied, but also leading to an increasing homogenization of the species composition of Alpine summit vegetation. This means that species diversity within individual areas (‘alpha diversity’) is increasing, but that species diversity across ecosystems (‘beta diversity’) is declining.

Seen generally, biodiversity can decline for two main reasons: through the disappearance of species, or when specialised species are replaced by generalists. The resulting homogenization can lead to a reduction in regional biodiversity. Until now, the question of homogenization has, however, primarily been discussed in connection with the impacts of invasive species, and less in the context of climate change. The evaluation of the data from the Bernina range now puts this debate in a new light.

For their study, the two researchers analysed data from their colleague Gian-Reto Walther, who investigated the top ten metres of these summits in detail in 2003 and made notes of all the plants. They compared these records with surveys from the years 1907 and 1985. On average, the number of plant species rose from 10 to 28 species per summit. The increasing temperatures has evidently brought about a proper ‘summit meeting’. More and more species are now forced to share the summits.

At the last count in 2003, however, no species were found to have disappeared since 1907. By contrast, the differences between the summits declined significantly over the same period. Today the summits of the Minor range are not only more similar to each other, they are also more similar to the neighbouring Languard range than before, despite the fact that they are separated from each other within the Bernina Alps by the Val da Fain.

“This is a clear sign of the early stages of homogenization,” says Gerald Jurasinski, a biogeographer from the University of Bayreuth. “We suspect that the accessibility and popularity of these summits among climbers is playing a role here – after all, seeds can also be carried on people’s clothes and shoes. But unfortunately there is not yet any data for this,” remarks Jürgen Kreyling of the Helmholtz Centre for Environmental Research - UFZ. The two researchers hope their work will draw attention to the fact that biodiversity means more than species richness.

The composition of the species spectrum, beta diversity and functional diversity also play an important role in functioning ecosystems. The University of Bayreuth is carrying out intensive research into this topic in collaboration with the UFZ, and this is also reflected in its courses, e.g. the Masters degree in Global Change Ecology, which forms part of the Bavarian Elite programme.

Tilo Arnhold

Doris Boehme | alfa
Further information:
http://www.ufz.de/index.php?en=15607

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>