Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant submarine landslide identified

22.11.2007
An enormous submarine landslide that disintegrated 60,000 years ago produced the longest flow of sand and mud yet documented on Earth.

The massive submarine flow travelled 1,500 kilometres – the distance from London to Rome – before depositing its load.

Details of the landslide and consequent sediment flow are reported online today in Nature by Dr Peter Talling from the University of Bristol, with colleagues from the National Oceanography Centre in Southampton and several other institutions.

Dr Talling said: “The volume of sediment transported by this flow in the deep ocean is difficult to comprehend. It was one of the largest movements of material ever to occur on our planet. This mass was ten times that transported to the ocean every year by all of the Earth’s rivers. The flow was sometimes over 150 km wide, spread across the open sea floor.”

Perhaps the most remarkable thing about this giant submarine flow is that it travelled hundreds of kilometres without depositing any sediment on the vast expanse of sea floor that it passed over.

Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient (from 0.05˚ to 0.01˚). For comparison, most premiership soccer pitches have a gradient of less than 1˚ to help their drainage.

Man is placing more and more structures on the sea floor, including installations for recovering subsurface oil and gas reserves that can be worth hundreds of millions of dollars. Understanding the cause and evolution of these infrequent undersea flows helps to assess any potential hazards posed to such structures.

Installations involved in oil and gas recovery are typically sited on slopes of greater than 0.05˚. Cores collected next to these installations to help design their foundations are often used for subsequent geohazard analysis.

This work suggests that a more accurate record of these flows is found by coring in the low-gradient basin plains which may be hundreds of kilometres from the installations.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Rare Earth Elements in Norwegian Fjords?
06.08.2020 | Jacobs University Bremen gGmbH

nachricht Rock debris protects glaciers from climate change more than previously known
05.08.2020 | Northumbria University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>