Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide atmospheric measurements will determine the role of atmospheric fine particles

19.11.2007
The Finnish Meteorological Institute in Helsinki, Finland, will host the first annual meeting of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions, EUCAARI, headed by Academy Professor Markku Kulmala, on 19–22 November 2007.

The purpose of EUCAARI is to significantly improve current knowledge of the impact of fine particles in the atmosphere on climate and air quality. The first year of the project was dedicated to developing state-of-the-art aerosol measuring equipment, establishing a global network of measuring stations, and planning. The measuring period, beginning next spring, will collect data on European air through both ground-based and airborne measurements simultaneously.

During the past year, this EU-wide research project has developed an extremely sensitive measuring device for aerosols, allowing for reliable measurements of particles less than 3 nanometres across. Such a development in measuring technology will play a key role when solving the physical and chemical questions of aerosol generation and formation, and has already enabled significant, recently-published new observations on the quantity of particles less than 3 nm in size.

The past few months have also seen the establishment of a global measuring station network for EUCAARI. Stations have been established in Brazil, South Africa, China, and India. They cover measurement areas that are geographically important for the monitoring of air pollution. For example, the Brazilian station is located in the rainforest region, and the South African station in the savannah area. The stations will start operating from the beginning of 2008. In addition to the University of Helsinki, the Finnish Meteorological Institute plays a key role in running the observation stations and planning the infrastructure.

Next May, a new, month-long measuring period will begin. During that time, the atmosphere above Europe will be observed simultaneously from both ground-based and aircraft-borne equipment. The data-gathering flights will move across Europe in various directions.

This will provide measuring data on, for example, the development of aerosol quantities at various altitudes in the atmosphere, and trace the long-range migration of air masses and various kinds of pollution. The month-long measurement period is part of a wider 15-month (1 March 2008–31 May 2009) intensive EUCAARI ground-based measurement campaign involving measuring stations in and outside Europe. The University of Helsinki’s Hyytiälä Forestry Field Station will contribute to this intensive period by providing ground-based measurements.

Markku Kulmala | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>