Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oldest fossil footprints on land

30.04.2002


First footing: animals probably made these marks venturing ashore to mate and lay eggs.
© Geological Society of America


Ancient sandstone is notoriously difficult to date.
© Geological Society of America


Animals may have beaten upright plants to land.

The oldest fossils of footprints ever found on land hint that animals may have beaten plants out of the primordial seas. Lobster-sized, centipede-like animals made the prints wading out of the ocean and scuttling over sand dunes about 530 million years ago. Previous fossils indicated that animals didn’t take this step until 40 million years later.

"It’s staggering that we thought for all this time that animals appeared on land so much later," says Simon Braddy of the University of Bristol, UK. Braddy discovered the fossils with a team of Canadian and British researchers1.



They found about 25 rows of footprints, left by mysterious many-legged animals, preserved in rocks in southeastern Canada. Ripples and fine layering in the sandstone are characteristic of wind-blown sand compacted over millennia, rather than underwater sediments.

The footprints in each track are 8 to 10 centimetres apart with a grove running between them. The animals that made them were about 50 centimetres long, had between 16 and 22 legs, and dragged a tail behind them, the researchers conclude.

The animals may well have been euthycarcinoids. These relatives of modern centipedes look a bit like skinny woodlice. "They’re sort of a halfway-house between a crustacean and an insect," Braddy explains.

Given the fossils’ age and what is known from other specimens, it is most unlikely that the creatures lived on land, says palaeontologist Nigel Trewin of the University of Aberdeen, UK. They probably ventured ashore to mate and lay eggs, as horseshoe crabs do today. Or they may have been escaping predators or scavenging for food.

Track laying

Whatever they were doing, they were doing it together. The multiple fossil tracks are of different widths, meaning that the ancient dunes were well trodden. "A population of animals were involved in these excursions onto land," says Braddy.

There are no fossils of land plants as old as the footprints, other than remains of moss-like mats of greenery. So the tracks threaten to contradict the prevailing hypothesis that animals colonized land to exploit leafy resources. "This finding throws that idea on its head," says Trewin.

But a single finding can never be relied on completely, Trewin warns. "It’s very exciting if they are as old as the evidence suggests," he says. But sandstone rocks of this age are notoriously difficult to date. More examples of similar tracks of similar age will be needed before palaeontologists can re-write the natural-history books.

References

  1. MacNaughton, R. B et al. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30, 391 - 394, (2002).


TOM CLARKE | © Nature News Service

More articles from Earth Sciences:

nachricht Ocean acidification: Coral core reveals dropping pH values in South Pacific
06.07.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Expansion of agricultural land reduces CO2 absorption
06.07.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

'Molecular movie' captures chemical reaction on atomic scale

06.07.2018 | Physics and Astronomy

Fiber-optic transmission of 4,000 km made possible by ultra-low-noise optical amplifiers

06.07.2018 | Information Technology

Ocean acidification: Coral core reveals dropping pH values in South Pacific

06.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>