Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice age imprint found on cod DNA

15.11.2007
An international team of researchers, led by the University of Sheffield, has demonstrated how Atlantic cod responded to past natural climate extremes. The new research could help in determining cods vulnerability to future global warming.

With fishing pressures high and stock size low, there is already major concern over the current sustainability of cod and other fisheries. The new findings, published in the journal, Proceedings of the Royal Society B, show that natural climate change has previously reduced the range of cod to around a fifth of what it is today, but despite this, cod continued to populate both sides of the North Atlantic.

The researchers used a computer model and DNA techniques to estimate where cod could be found in the ice age, when colder temperatures and lower sea-levels caused the extinction of some populations and the isolation of others.

The computer models used to estimate ice-age habitats suitable for cod were developed by Professor Grant Bigg, Head of the University of Sheffield’s Department of Geography. These climatic analyses were combined with genetic studies by US researchers at Duke University and the University of California, and ecological information prepared by colleagues at the University of East Anglia and the Institute of Marine Research in Norway.

On land, plants and animals (including humans) are known to have moved further south when the northern ice sheets reached their maximum extent around 20,000 years ago. Similar migrations must have happened for plankton and fish in the sea. But there were two added complications: firstly, greatly reduced sea levels meant that many shallow and highly productive marine habitats around Europe and North America ceased to exist. Secondly, the ice-age circulation patterns in the North Atlantic caused the temperature change between tropical and polar conditions to occur over a much shorter north-south distance, reducing the area suitable for temperate species – such as cod.

The new analyses included these effects, together with other environmental and ecological information, in order to estimate where it was possible for Atlantic cod to reproduce and survive.

The results indicated that the ice-age range of Atlantic cod extended as far south as northern Spain, but the total area of suitable habitat was much more restricted. Nevertheless, populations of cod continued to exist on both sides of the North Atlantic. These findings were confirmed by genetic data, based on over a thousand DNA analyses of present-day cod populations, from Canada, Greenland, Iceland and around Europe.

Professor Bigg said: “This research shows that cod populations have been able to survive in periods of extreme climatic change, demonstrating a considerable resilience. However this does not necessarily mean that cod will show the same resilience to the effects of future climatic changes due to global warming.”

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk
http://www.pubs.royalsoc.ac.uk/proceedingsb

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>