Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Life Originated In Space

15.04.2002


Life originated on the Earth more than 3.5 billion years ago. However, the scientists are still disputing over the possible sources of the life origin. The matter is that life on our planet evolved from the molecular level to the level of bacteria organisms within 0.5 - 1 billion years, this period being very short for such an important evolutionary step. The researchers are still racking the brains over this mystery. One of the popular hypothesis asserts that some germs of life have been brought to the Earth from space. But what exactly could have been brought from space and how could the germs have originated in space?



E.A. Kuzicheva and N.B.Gontareva, research assistants from the Institute of Cytology, Russian Academy of Sciences, have confirmed a possibility of abiogenous synthesis of complex organic compounds (monomeric units of nucleic acids) on the surface of comets, asteroids, meteorites and space dust particles in the outer space. Therefore, it is possible that the above monomeric units of nucleic acids could have got to the Earth and thus could have significantly reduced the time period of the evolution process. On the surface of space bodies the scientists have found all kinds of various organic molecules (amino acids, organic acids, sugars etc.) and the components required for their synthesis. Obviously, it is there that organic substances are being synthesised, but the researchers can not be sure of this fact, until the experiments confirm their assumptions. The scientists from St. Petersburg reproduced synthesis of one of the DNA components - 5`-adenosine monophosphate (5`-AMP) under the conditions specially designed to simulate the space environment. In order to synthesise 5`-AMP it is required to combine adenosine and inorganic phosphate. On the Earth the reaction goes in the solution, but there are no solvents whatsoever in space, therefore the researchers dried them in the air and got a pellicle. Synthesis requires energy. The major source of energy in the outer space both at present and in the prebiotic period of the Earth history has been the solar ultraviolet radiation of different wavelengths. Therefore, the pellicles were irradiated by a powerful ultraviolet lamp. Naturally, the synthesis was carried out in vacuum, and the researchers used the lunar soil, delivered to the Earth by the `Moon-16` station from the Sea of Abundance, as a model of the comet, meteorite, interplanetary or cosmic dust. The soil represented basaltic dust of the dark-grey colour, the diameter of its particles being less than 0.2 millimetres.

After 7-9 hours of ultraviolet irradiation of the dry pellicles the scientists acquired several compounds, mainly 5`-AMP, one of the DNA/RNA monomers. The energy of radiation does not promote synthesis alone, it also facilitates decomposition of the initial and newly-synthesised compounds, the more powerful the radiation is, the more extensively the decomposition goes. However, the lunar soil provided some protection. It has appeared that a small pinch of the lunar soil protects organic substances from the destructive ultraviolet impact - the lunar soil helps to increase the 5`-AMP yield by 2.7 times.


The researchers have made a conclusion that the organic compounds synthesis could have happened in the outer space environment. The synthesis could have taken place on the surface of space bodies at the initial phases of the solar system formation, along with that the chemical evolution (formation and selection of complex molecules) could have started in space. By the time the Earth was formed the chemical evolution might have approached the phase to be followed by the biological evolution. That implies that life on the Earth most probably did not start from the elementary organic molecules synthesis, but commenced from the polymers formation phase or from a further stage. Hopefully, the above assumptions will help the scientists to deeper penetrate into the mystery of the accelerated development of life on the Earth when the latter was quite a `young` planet.

Natalia Reznik | alphagalileo

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>