Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Life Originated In Space

15.04.2002


Life originated on the Earth more than 3.5 billion years ago. However, the scientists are still disputing over the possible sources of the life origin. The matter is that life on our planet evolved from the molecular level to the level of bacteria organisms within 0.5 - 1 billion years, this period being very short for such an important evolutionary step. The researchers are still racking the brains over this mystery. One of the popular hypothesis asserts that some germs of life have been brought to the Earth from space. But what exactly could have been brought from space and how could the germs have originated in space?



E.A. Kuzicheva and N.B.Gontareva, research assistants from the Institute of Cytology, Russian Academy of Sciences, have confirmed a possibility of abiogenous synthesis of complex organic compounds (monomeric units of nucleic acids) on the surface of comets, asteroids, meteorites and space dust particles in the outer space. Therefore, it is possible that the above monomeric units of nucleic acids could have got to the Earth and thus could have significantly reduced the time period of the evolution process. On the surface of space bodies the scientists have found all kinds of various organic molecules (amino acids, organic acids, sugars etc.) and the components required for their synthesis. Obviously, it is there that organic substances are being synthesised, but the researchers can not be sure of this fact, until the experiments confirm their assumptions. The scientists from St. Petersburg reproduced synthesis of one of the DNA components - 5`-adenosine monophosphate (5`-AMP) under the conditions specially designed to simulate the space environment. In order to synthesise 5`-AMP it is required to combine adenosine and inorganic phosphate. On the Earth the reaction goes in the solution, but there are no solvents whatsoever in space, therefore the researchers dried them in the air and got a pellicle. Synthesis requires energy. The major source of energy in the outer space both at present and in the prebiotic period of the Earth history has been the solar ultraviolet radiation of different wavelengths. Therefore, the pellicles were irradiated by a powerful ultraviolet lamp. Naturally, the synthesis was carried out in vacuum, and the researchers used the lunar soil, delivered to the Earth by the `Moon-16` station from the Sea of Abundance, as a model of the comet, meteorite, interplanetary or cosmic dust. The soil represented basaltic dust of the dark-grey colour, the diameter of its particles being less than 0.2 millimetres.

After 7-9 hours of ultraviolet irradiation of the dry pellicles the scientists acquired several compounds, mainly 5`-AMP, one of the DNA/RNA monomers. The energy of radiation does not promote synthesis alone, it also facilitates decomposition of the initial and newly-synthesised compounds, the more powerful the radiation is, the more extensively the decomposition goes. However, the lunar soil provided some protection. It has appeared that a small pinch of the lunar soil protects organic substances from the destructive ultraviolet impact - the lunar soil helps to increase the 5`-AMP yield by 2.7 times.


The researchers have made a conclusion that the organic compounds synthesis could have happened in the outer space environment. The synthesis could have taken place on the surface of space bodies at the initial phases of the solar system formation, along with that the chemical evolution (formation and selection of complex molecules) could have started in space. By the time the Earth was formed the chemical evolution might have approached the phase to be followed by the biological evolution. That implies that life on the Earth most probably did not start from the elementary organic molecules synthesis, but commenced from the polymers formation phase or from a further stage. Hopefully, the above assumptions will help the scientists to deeper penetrate into the mystery of the accelerated development of life on the Earth when the latter was quite a `young` planet.

Natalia Reznik | alphagalileo

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>