Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers detect hint of oxygen 50 to 100 million years earlier than first believed

01.10.2007
UCR part of teams from 5 research universities that analyzed Australian drill core for evidence of oxygen in Earth's early atmosphere

Two teams of scientists, including three researchers from UC Riverside, report that traces of oxygen appeared in Earth’s atmosphere roughly 100 million years before the “Great Oxidation Event” 2.4 billion years ago. The Great Oxidation Event is when most geoscientists think atmospheric oxygen rose sharply from very low levels and set the stage for animal life that followed almost two billion years later.

Analyzing layers of sedimentary rock in a kilometer-long core sample they retrieved in 2004 from the Hamersley Basin in Western Australia, the researchers found evidence for the presence of a small but significant amount of oxygen 2.5 billion years ago in the oceans and likely also in Earth’s atmosphere.

Because the core was recovered from deep underground, it contains materials untouched by the atmosphere for billions of years. After retrieval, the scientists sliced the core longitudinally for analysis.

Study results appear in a pair of papers in tomorrow’s issue of Science.

The UCR contribution:

Geochemists Timothy Lyons, Steven Bates, and Clinton Scott of the UCR Department of Earth Sciences — working with teams from Arizona State University and the universities of Maryland, Washington, and Alberta — generated elemental and isotopic data that provide indirect, or proxy, evidence for the evolving atmosphere and its relationship to the early evolution of life.

“This is the earliest convincing record for an ephemeral accumulation of oxygen in the biosphere before its irreversible rise beginning 2.4 billion years ago,” said Lyons, a professor of biogeochemistry.

Scott, a graduate student working with Lyons, used metals in the ancient ocean—now trapped in sedimentary rocks—as proxies for the amount of oxygen in the early ocean and atmosphere. His doctoral research provided a baseline for the Australian samples, showing that the 2.5 billion-year old rocks look more like those from younger times when oxygen was higher in the atmosphere.

These results revealed to the UCR geochemists and their colleagues at Arizona State University that oxygen increased significantly but briefly 100 million years before its permanent place in Earth’s atmosphere.

Working principally with colleagues at the University of Maryland, Bates, a research associate, and Lyons analyzed sulfur present in the Australian rocks as another fingerprint of oxygen concentrations at Earth’s surface. Their analysis of the sulfur also confirmed that the world changed briefly but importantly 2.5 billion years ago, presaging the life-affirming oxygenation of the atmosphere 100 million years later.

“We were surprised to see evidence of increasing oxygen in rocks so old,” Lyons said. “And the fact that two independent lines of evidence point in the same direction suggests that Earth’s most dramatic shift in atmospheric composition and its relationship to the evolution of life began earlier and was more complex than most imagined.”

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>