Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate mantle's spin transition zone, leading to clues about Earth's structure

25.09.2007
Researchers have located the spin transition zone of iron in Earth’s lower mantle, a discovery which has profound geophysical implications.

By looking at the electronic spin state of iron in a lower-mantle mineral at high temperatures and pressures relevant to the conditions of the Earth’s lower mantle, Lawrence Livermore National Laboratory researchers and colleagues have for the first time tracked down exactly where this occurs.

The Earth’s mantle is a 2,900-kilometer thick rocky shell that makes up about 70 percent of the Earth’s volume. It’s mostly solid and overlies the Earth’s iron-rich core. The lower mantle, which makes up more than half of the Earth by volume, is subject to high pressure-temperature conditions with a mineral collection made mostly of ferropericlase (an iron-magnesium oxide) and silicate perovskite (an iron-magnesium silicate). The Earth’s lower mantle varies in pressure from 22 GPa (220,000 atmospheres) to 140 GPa (1,400,000 atmospheres) and in temperatures from approximately 1,800 K to 4,000 K. (One atmospheres equals the pressure at the Earth’s surface).

The scientists identified the ratios of the high-spin and low-spin states of iron that define the spin transition zone. By observing the spin state, scientists can better understand the Earth’s structure, composition, and dynamics, which in turn affect geological activities on the surface.

“Locating this pressure-temperature zone of the spin transition in the lower mantle will help us understand its properties, in particular, how seismic waves travel through the Earth, how the mantle moves dynamically and how geomagnetic fields generated in the core penetrate to the Earth’s surface,” said Jung-Fu Lin, a Lawrence fellow in LLNL’s Physics and Advanced Technologies Directorate.

“The spin transition zone (STZ) concept differs from previously known structural transitions in the Earth’s interior (e.g., transition zone (TZ) between the upper mantle and the lower mantle), because the spin transition zone is defined by the electronic spin transition of iron in mantle minerals from the high-spin to the low-spin states.”

The research appears in the Sept. 21 issue of the journal, Science.

Lin and colleagues determined that the simultaneous pressure-temperature effect on the spin transition of the lower mantle phase is essential to locating the exact place where this occurs.

The scientists studied the electronic spin states of iron in ferropericlase and its crystal structure under applicable lower-mantle conditions (95 GPa [950,000 atmospheres] and 2,000 K) using X-ray emission spectroscopy and X-ray diffraction with a laser-heated diamond anvil cell. The diamond cell is a small palm-sized device that consists of two gem-quality diamonds with small tips pushing against each other. Because diamonds are the hardest known materials, millions of atmospheres in pressure can be generated in the small device. The sample between the tips was then heated by two infrared laser beams, and the spin states of iron in ferropericlase were probed in situ using synchrotron X-ray spectroscopes at the nation’s Advanced Photon Source at Argonne National Laboratory.

Ferropericlase (which is made up of magnesium, iron and oxygen) is the second most abundant mineral in the lower mantle and its physical properties are important for understanding the Earth’s structure and composition. A high- to low-spin transition of iron in ferropericlase could change its density, elasticity, electrical conductivity and other transport properties. Pressure, temperature and characteristics of the spin transition of ferropericlase are therefore of great importance for the Earth sciences, Lin explained.

“The spin transition zone of iron needs to be considered in future models of the lower mantle,” said Choong-Shik Yoo, a former staff member at LLNL and now a professor at Washington State University. “In the past, geophysicists had neglected the effects of the spin transition when studying the Earth’s interior.

Since we identified this zone, the next step is to study the properties of lower mantle oxides and silicates across the zone. This research also calls for future seismic and geodynamic tests in order to understand the properties of the spin transition zone.”

“The benchmark techniques developed here have profound implications for understanding the electronic transitions in lanthanoid and actinoid compounds under extreme conditions because their properties would be affected by the electronic transitions,” said Valentin Iota, a staff member in LLNL’s Physics and Advanced Technologies Directorate.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>