Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Surface Temperatures Drive Back Winter Ice in Barents Sea

19.09.2007
Not so between Siberia and Alaska, where winter sea ice holds its own

Rising sea-surface temperatures in the Barents Sea, northeast of Scandinavia, are the prime cause of the retreating winter ice edge over the past 26 years, according to research by Jennifer Francis, associate research professor at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). The recent decreases in winter ice cover is clear evidence that Arctic pack ice will continue on its trajectory of rapid decline, Francis said.

In a paper published in Geophysical Review Letters, Francis and Elias Hunter, a research specialist in Francis’ laboratory, found that the rising average winter-time sea-surface temperature of the Barents Sea – up 3 degrees Celsius since 1980 – is likely driven by increasing greenhouse gases, which in turn are melting more ice. Francis and Hunter used satellite information dating back 26 years to perform their study.

Scientists have known for some time that the extent of perpetual, summer ice cover in the Arctic has been shrinking, but until the past few years, the average amount of winter ice has been relatively steady. The winter ice amount is important because if it begins to decrease, scientists believe it is an indicator that enough extra heat from the sun is being absorbed in summer in new open water areas so that the ice grows less in winter and is more easily melted the following summer, leading to even less summer ice. The record-breaking ice loss this year is further, dramatic evidence that this process is underway. While satellites can see the recent winter ice retreat, no one knew until now what was driving the ice back. Francis said she and Hunter were surprised when they discovered that warming ocean temperatures – and not atmospheric effects – were the main source of winter ice retreat, and that the warming is linked to general rising temperatures of the Atlantic Ocean via the Gulf Stream, which brings Atlantic water into the Barents Sea. “In the Barents Sea, I expected more influence from atmospheric heating; but it [the retreat of the ice edge] seems to be governed almost entirely by warming from the ocean,” Francis said.

Should the warming trend continue -- and all indications are that it will -- there would be considerable economic and political implications. “Fishing, shipping, oil exploration will all be easier to do in the Arctic if there is less ice around for a shorter time,” Francis said.

Francis and Hunter were in for another surprise in the Bering Sea, between Alaska and Siberia. That sea is virtually cut off from the Pacific Ocean by the Aleutian Islands. The researchers expected the ice edge there to be pushed around by northerly and southerly winds, but that wasn’t the case. Instead, it was the strength or weakness of the Aleutian Low – a semi-permanent storm with predominantly easterly winds in much of the Bering Sea – that determined the ice edge. In years when the low was weak – when the east wind didn’t blow as hard – the ice edge crept farther south. In years when the east winds blew hard, the ice edge retreated northward. The strength of the Aleutian Low oscillates in cycles lasting 10 to 20 years, Francis said, and right now, appears to be in a weak cycle. That means that the ice edge in the Bering Sea, not exposed to the world’s ocean system like its Barents Sea counterpart, has not retreated as much. Computer models predict, however, that the Aleutian Low will strengthen as the global climate system adapts to increasing greenhouse gases.

Contact: Ken Branson
732-932-7084, Ext. 633
E-mail: kbranson@ur.rutgers.edu

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>