Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dispelling the myth of bipolar glaciation 41 million years ago

31.08.2007
Large continental ice sheets did not exist in both hemispheres around 41 million years ago during the warmer-than modern conditions of the time.

This is the finding of scientists from the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton (NOCS), reported in Nature.

The Eocene epoch (55 to 34 million years ago) was the last interval of sustained global warmth in Earth's history, a likely consequence of atmospheric carbon dioxide levels much higher than today. It has been known for some time that, at the end of the Eocene, ice sheets on Antarctica first expanded to close their modern size. However, in a recent controversial move, it was proposed that, despite the high global temperatures of the time, very large ice sheets existed 8 million years earlier, not just on Antarctica but also in the Northern Hemisphere.

New findings from NOCS researchers show that, if ice sheets did exist during the controversial interval they must have been small and would have been easily accommodated on Antarctica with no need to invoke Northern Hemisphere glaciation. This result is more in keeping with other geological records and climate model results suggesting that the threshold for ice sheet inception would have been crossed earlier in the Southern Hemisphere than in the Northern Hemisphere because the South Pole has a continent sitting over it (Antarctica) while the North Pole has an ocean (the Arctic).

The NOCS group also identifies a short-lived event immediately preceding the controversial interval during which ocean temperatures briefly increased, the deep ocean became more acidic and the carbon cycle was perturbed by the contribution of isotopically light carbon to the ocean/atmosphere system. This finding hints at the operation of carbon cycle processes common to those thought responsible for the famous transient extreme warming events that occurred between 50 and 55 million years ago, providing a focus for future work aimed at better understanding climate-carbon cycle feedbacks.

Kirsty Edgar, Dr Paul Wilson and Philip Sexton of the University of Southampton's School of Ocean and Earth Science, based at NOCS, used stable isotope analysis of fossil shells of foraminifera (microscopic marine organisms) and bulk sediment from deep-sea sediments to generate a record of climate change and estimate potential global ice volumes in the Eocene. Sediment cores were taken in the tropical Atlantic Ocean by the Ocean Drilling Program (ODP).

The Natural Environment Research Council funded this research via a UK ODP grant. Collaborator Yusuke Suganuma is based at the University of Tokyo, Japan.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>