Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes Mars magnetic?

13.08.2007
Earth's surface is a very active place; its plates are forever jiggling around, rearranging themselves into new configurations. Continents collide and mountains arise, oceans slide beneath continents and volcanoes spew. As far as we know Earth's restless surface is unique to the planets in our solar system. So what is it that keeps Earth's plates oiled and on the move?

Scientists think that the secret lies beneath the crust, in the slippery asthenosphere. In order for the mantle to convect and the plates to slide they require a lubricated layer. On Mars this lubrication has long since dried up, but on Earth the plates can still glide around with ease.

If you could pick up a rock from the surface of Mars, then the chances are it would be magnetic. And yet, Mars doesn't have a magnetic field coming from its core. These rocks are clinging to the signal of an ancient magnetic field, dating back billions of years, to the times when Mars had a magnetic field like Earth's.

So how have these rocks hung onto their magnetic directions and what do they tell us about Mars? Strangely, the answer to these questions might be sitting here on Earth.

Most continental rocks on Earth align their magnetic moments with the current magnetic field - they are said to have 'induced' magnetism. "I consider induced rocks to have 'Alzheimers'. These are the rocks that forgot where they were born and how to get home," explains Suzanne McEnroe from the Geological Survey of Norway at a European Science Foundation (ESF), EuroMinScI conference near Nice, France this year.

However, not all of Earth's continental rocks have an induced magnetization. Some rocks stubbornly refuse to swing with the latest magnetic field, and instead keep hold of the direction they were born with. These rocks are said to have a remanent magnetization.

McEnroe and her colleagues have been studying some of Earth's strongest and oldest remanent magnetic rocks, to find out why they have such good memories. Understanding these rocks may give us clues as to what kind of rocks lie on Mars.

One of their research projects (in cooperation with Phil Schmidt and David Clark at CSIRO, Australia and just published in the Journal of Geophysical Research) is on the Peculiar Knob Formation in South Australia. These rocks are around 1 billion years old and have a strong magnetic remanence, more than 30 times larger than typically found in basaltic rocks.

"This particular research evolved from looking for an economic mineral deposit," says McEnroe. The mining company had assumed that the rocks in this strongly magnetic area were holding an induced magnetic field and that there would be magnetite buried down below. However, they were puzzled when a different mineral - hematite, came out of the drill core. Had they missed their target, or were their assumptions wrong?

By studying the samples under a powerful microscope and modelling their magnetic properties, McEnroe was able to show that the hematite was responsible for the strong magnetic field and that it was holding a remanent field from around 1 billion years ago. "We could see that the hematite contained small intergrowths that carried the magnetism," says McEnroe, who presented her findings at the 1st EuroMinScI Conference near Nice, France in March this year.

And it turns out that the microstructure of the rock is the key to whether it can hold a remanent magnetization or not. Together with Richard Harrison, a mineral physicist at Cambridge University, UK, and Peter Robinson at NGU, McEnroe has been studying strong remanent magnetic rocks from a variety of places including Scandinavia and the USA.

A study on nearly billion-year-old rocks in Norway showed a remanent magnetic anomaly comparable in scale to those observed on Mars. The remanent magnetic anomaly dominates the local magnetic field to such a degree that more than half the Earth's field is cancelled. It is nearly impossible to use a compass in the area, which cannot point correctly north because of the strong remanent magnetization in the rocks.

What they have found is that rocks containing nanometre scale intergrowths of ilmenite and hematite are better able to cling onto their original magnetization than those without such fine-scale features. "Placing a nanoparticle of ilmenite into the hematite host creates a strong and stable magnetic signal that can survive large changes in temperature and magnetic field over billions of years," explains Harrison.

So can this tell us anything about the rocks on Mars? "These rocks are good analogues for the magnetic rocks we see on Mars because of their strong magnetism and the length of time they have retained this memory," says McEnroe. Certainly this nano-scale microstructure is a plausible candidate for the magnetic rocks on Mars.

However, the rocks on Earth can't answer all our questions. "There is not going to be one mineral or one tectonic setting on Mars. There are going to be different reasons that enhance the signature in different places," says McEnroe. The only way to definitively answer the question is to go and pick up some rocks from Mars.

EuroMinScI is the European Collaborative Research (EUROCORES) Programme on "European Mineral Science Initiative" developed by the European Science Foundation.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>