Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible gases form most organic haze in urban, rural areas

11.07.2007
Reactive gases, not direct emissions of particulates, form bulk of haze, says CU-Boulder study

A new study involving the University of Colorado at Boulder shows that invisible, reactive gases hovering over Earth's surface, not direct emissions of particulates, form the bulk of organic haze in both urban and rural areas around the world.

Many science and health professionals have believed sources that spew soot and other tiny particles directly into the air were the primary culprit in the formation of organic haze. But a new study by researchers at CU-Boulder's Cooperative Institute for Research in Environmental Sciences show aerosols formed chemically in the air account for about two-thirds of the total organic haze in urban areas and more than 90 percent of organic haze in rural areas.

The study was led by Qi Zhang, a former CIRES scientist now at the Atmospheric Sciences Research Center at State University of New York, Albany and CIRES researcher Jose-Luis Jimenez. The study was published in the July 7 online issue of Geophysical Research Letters.

The scientists compared concentrations of directly emitted, or primary, aerosols with chemically formed, or secondary aerosols. They surveyed urban areas, areas downwind of urban areas and rural areas from 37 sites in 11 countries.

"What we're seeing is that concentrations of secondary organic aerosols decrease little downwind from urban areas," said Jimenez, also an assistant professor in CU-Boulder's chemistry and biochemistry department. "That tells us there has to be an extended source or continuous formation for the pollution."

The scientists believe the extended source of particle pollution is reactive, colorless gases called Volatile Organic Compounds, or VOCs, the same gases that form smog. Jimenez said he believes VOCs emitted in urban and regional areas immediately begin undergoing a chemical transformation that causes them to stick to particles and increase such pollution.

"We think the gases react over a few days as the air travels downwind into more rural regions, producing more organic haze," he said.

Reactive gases are a diverse group of chemical compounds that include VOCs, surface ozone, nitrogen compounds and sulfur dioxide. All play a major role in the chemistry of the atmosphere and as such are heavily involved in interrelations between atmospheric chemistry and climate.

VOCs are released by cars and trucks, gasoline evaporation that occurs during gas station fill-ups, and some industrial processes, said Zhang. VOCs also are produced naturally by vegetation.

The U.S. Environmental Protection Agency does not currently regulate VOCs except for on-road vehicles and industrial settings, said Jimenez.

Jimenez and Zhang are working to better understand the relative importance of natural and human sources of VOCs in the production of secondary organic aerosol pollution, including which human sources significantly contribute to the problem.

"One question is whether we could improve air quality if we directly targeted VOC emissions and not just particle emissions," said Zhang. "Until we understand the breakdown between human-caused and natural VOC emissions, and between different human sources, we won't have an answer to that question."

Jose-Luis Jimenez | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>