Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilised midges provide clues to future climate change

10.07.2007
Fossilised midges have helped scientists at the University of Liverpool identify two episodes of abrupt climate change that suggest the UK climate is not as stable as previously thought.

The episodes were discovered at a study in Hawes Water in Northern Lancashire, where the team used a unique combination of isotope studies and analysis of fossilised midge heads. Together they indicated where the climate shifts occurred and the temperature of the atmosphere at the time.

The first shift detected occurred around 9,000 years ago and the second around 8,000 years ago. Evidence suggests that these shifts were due to changes in the Gulf Stream, which normally keeps the UK climate warm and wet.

During each shift the North West climate cooled with an average summer temperature fall of 1.6 degrees – approximately three times the amount of temperature change currently attributed to global warming.

Scientists found that the atmosphere cooled rapidly and cold periods lasted up to 50 years for one event and 150 years for the other. The detection of these events will allow experts to understand more clearly what can happen when the climate system is disturbed.

Professor Jim Marshall, from the University’s Department of Earth and Ocean Sciences, explains: “At Hawes Water mud has been deposited continuously without any gaps, which allows us to measure an accurate timeline of events. We have monitored the modern environment of the lake for the past eight years and this has shown us how to read the past climate record from the ancient mud in the lake.

“Isotope analysis helped us identify the episodes of climate change. We then used fossilised heads of non-biting midges, which are preserved in every spoonful of mud. They tell us the temperature at the time the mud was deposited. We compare the population of midge heads in each sediment sample with the population of midges in Scandinavian lakes, which span a wide range of modern day temperatures.”

The team found the two abrupt climate changes correlated directly with two episodes of sharp climate deterioration in areas such as Greenland, suggesting that a change in the Gulf Stream had occurred.

Professor Marshall added: “People are worried that the melting of the polar ice caps could result in a slow-down of what we call the ‘Atlantic Conveyer’. This is where cold water that sinks in the far north is replaced by warmer water from the tropics in its circulation of the North Atlantic Ocean. A number of studies suggest that the conveyer may be unstable and may be able to slow down or switch off completely, making our climate suddenly colder. Our study provides evidence that the two climate shifts we detected were directly linked to a slow-down in the conveyer.”

Scientists believe that this new data will provided a unique test for the global climate computer models that are being used to simulate future climate change.

The research - in collaboration with University of Swansea; the Open University; University of Exeter; Edge Hill University and University College London - is published in Geology.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>