Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making waves: how UCL research could minimise the impact of future tsunami

02.07.2007
For the first time, a team of experts is preparing to create tsunami in a controlled environment in order to study their effects on buildings and coastlines - ultimately paving the way for the design of new structures better able to withstand their impact. Ahead of today’s (Monday 2nd) Coastal Structures 2007 International Conference Dr Tiziana Rossetto, UCL Department of Civil & Environmental Engineering, unveiled plans to develop an innovative new tsunami generator capable of creating scaled-down versions of the devastating waves. The UCL team will be working with marine engineering specialists HR Wallingford (HRW) throughout the project.

“Tsunami are water waves generated by earthquakes, underwater landslides, volcanic eruptions or major debris slides,” said Dr Rossetto. “The waves travel across oceans with small vertical displacements and in open water you could easily bob over one without noticing. It’s when the waves approach the coastline, hit shallower water, slow down, and grow taller that you get the huge wall of water that people visualise when you mention a tsunami.

“The main gap in our knowledge is about what happens when the tsunami wave approaches the nearshore region and then runs inland. These flow processes cannot be simplified using mathematical models because of the complex interaction that takes place with beaches, sediment, coastal defences and then in and around buildings.

“It is possible for the whole process to be simulated with hydraulic models, but to get meaningful data the tsunami wave has to be accurately generated in the first place. Conventional wave generators haven’t been able to replicate tsunami because of the unusually long wavelength that is required.”

Professor William Allsop of HRW said: “Our new machine will control the flow of a large mass of water by using air suction within an inverted tank. We have used this technology over many years to make model tides in large scale models and our collaboration with UCL means we will be able to produce a unique research facility.”

The new tsunami generator will be able to create multiple waves, replicating the three or four peaks experienced during the Boxing Day tsunami that hit the Indian Ocean in 2004. The tsunami will pass down a 45m long flume at realistic wavelengths, mimicking the characteristics of waves which have passed from deep water (approx. 200m) into shallow water (20m – 50m) as they approach the coast. The wave flume will be equipped to measure coastal processes, inundation and wave forces as the tsunami travels up a shelving seabed, breeches the coastline and flows inland.

After the initial series of experiments, a team of researchers from UCL and HRW will go on to examine the effects of retreating and repeated waves on seawalls and beaches. The tests will measure the force exerted by the waves on representative buildings and quantify the wave’s ability to erode the coast, potentially destabilising structures completely.

The tsunami experiments will take place at HR Wallingford’s laboratories in Oxfordshire and construction of the generator is scheduled for completion in the summer of 2008. UCL and HRW plan to make the facility available to international teams of researchers in autumn 2009.

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>